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I INTRODUCTION

This is the final report of a project devoted to the theoretical
study of molecular state-to-state collision phenomena. The presenf
document describes the work accomplished during the fifth year of the
program (1 May 1979 to 30 April 1980). Interim scientific reports
dated June 22, 1979, July l, 1978, June 24, 1977, and Juﬁe 28, 1976

have covered the work of preceding years.

The purpose of the project has been to develop the theoretical
tools necessary to treat a variety of collision processes, and to per-
form calculations of transition probabilities for selected systems.

The problems considered have involved the interactions of three particles

under the influence of potentials for two or more electronic states.
For this type of process, currently available experimental techniques
allow the determination of specific states of species before and after
interaction. Our general method of approach has been to pursue two
types of calculations: model calculations designed to isolate and
probe particular reaction mechanisms, and detailed calculations on
specific systems that have been studied experimentally in our labora-

' tory or elsewhere. This dual approach has enabled us better to under-
i stand a wide range of scattering phenomena, and has provided a

quantitative test of the accuracy of the methods we have developed.

( i During the past year we have worked on the following types of
problems: theoretical studies of collisional angular momentum mixing
1 of highly excited, Rydberg atoms; calculations of potential surfaces,
. matrix elements, and photodissociation cross sections for small

molecules; and the development of new methods to treat the nonadiabatic




process of ion-pair formation in collisions of alkali atoms or rare

gas metastables with diatomic molecules. Our accomplishments in these

areas are summarized in the following section.
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‘can be quickly and easily applied to a variety of systems.

II RESEARCH ACCOMPLISHMENTS

TIheoretical Studies of Rydberg Atoms

Studies investigating the properties of highly excited Rydberg

atoms have been under way at SRI for several years., The experiments

of Gallagher, Edelstein, and Hilll first identified the "angular

momentum mixing' process:

Na*(nd) + X = Na* (&) +x (& 2 3) (1)

in 1975. The cross sections for this process are very large and show

a maximum when plotted as a function of principal quantum number n.

Over a period of years, studies supported by this contract have con-

tributed to increased understanding of Rydberg collision processes.

The work completed in the past year has furthered this understanding

by consolidating the results of several previous calculations in terms

of general scaling formulas. These formulas lead to an appealing

physical interpretation of the process of angular mcomentum mixing, and

During the past year, in work supported by another Air Force
contract, the research group of T. F. Gallagher has studied collisions

of Na Rydberg atoms with molecules such as CH, and C3H8 (methane and

propane).6 The research sought to determine the rple of the intermal
structure of the collision partner, The experimental data obtained
was qualitatively very similar to data obtained for much simpler
collision partners, such as the rare gaseé He, Ne, and Ar,l and also
for Nz.5 These results suggested that the larger and more complicated
collision partners could be treated by the same theoretical modela's
that was successfully used to analyze collisions with structureless
particles. The only information required for this model is data for low

energy electron scattering from CH, and C3H8, which is available.
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Because of the apparent wide range of validity of the theoretical
model we have used, and because of the small number of parameters on
which the results depend, we sought to express the results in terms of
physical scaling laws., We have found that the results of many coupled-
channel and Born calculations can be expressed in terms of numerically

determined functions of reduced parameters. The general result is

| 0y (@) = a? g(8) £(y) 2)
where Gl-mix(n) is the experimentally measured cross section for process
(1), summed over all final states &’ ; 8 is a quantity that measures the
strength of the interaction of the collision partner with the diffuse
2lectron cloud; and v is a quantity related to the energy gap between
the nd and higher nl states of Na. Equation (2) thus leads to an
interpretation of the scattering process in terms of reduced parameters
that have a clear physical meaning., The formula has been applied to
collisions of Na(nd) with He, Ne, Ar, Nz, CHa, C3H8; to Rb(nf) + He, Ar,

Xe; and to Xe(nf) + CO The results are generally accurate to about

a factor of two. Thiszdegree of accuracy is very useful because the
cross sections vary by an order of magnitude or more in the range of n
considered. This work has been submitted to Physical Review A, and a
preprint is included as Appendix A. This preprint contains a more
complete discussion of the scaling formula, as well as graphs of the

functions £(y) and g(B) of Eq. (2).

The most important theoretical result of our work on Rydberg atoms
has been to achieve a better understanding of the role of the inter-
action of the excited electron with the collision partner., It had
generally been argued that the interaction of a Rydberg atoms with a
collision partner should be determined by the way the excited electrom,
in its large orbit, scattered from the collision partner. The quantita-
tive calculations we have done lend support to this physical picture,

and explain the mechanism in much greater detail.

.
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+
Theoretical Calculations of Small Molecules: CH

The formation and destruction of CH+ in diffuse interstellar clouds
is an interesting problem in interstellar chemistry. Better knowledge
of the excited state potential curves as well as of photodissociation
cross sections is necessary to understand this astrophysical proﬁlem.
The CH+ system is small enough so that calculations that include Rydberg
states on the same footing as valence states could be qndertaken. In
collaboration with Dr. Bowen Liu, IBM Research Laboratory, San iose, CA,
and Dr. Kate Kirby, Harvard-Smithsonian Center for Astrophysics, Cambridge,
MA, we performed ab initio calculations of the valence and low-lying
Rydberg states of In and 12 symmetry of CH+. The specific objective of
this work was to explore the repulsive excited states of CH+ as well as
to look for bound excited states that are dipole-connected to the ground
X12+ state to investigate whether CH+ is a source for unidentified
interstellar molecular absorption lines. Only the first root of each
symmetry is bound, although the 21£+ state is found to be quasi-bound
in this calculation, Transition moments and photodissociation cross
sections from the X12+ state to a number of excited lﬁ+ and ! states
were calculated; it was found that the 312+ and Zln states have signifi-
cant cross sections at wavelengths longer than Lyman-y. From these
cross sections and astrophysical information, photodissociation rates

in interstellar clouds and comets can be obtained.

Photodissociation cross sections and their astrophysical implica-
tions are discussed in a paper accepted by the Astrophysical Journa .7
The ab initio calculations, in which care was taken to test the validity
of the calculational procedure, are described in a paper that has been

accepted by the Journal of Chemical Physics. A preprint of the latter

paper is attached as Appendix B.




We have also recently completed a calculation of the 32- state of
CH* which correlates asymptotically to C(SP) + Hf. This system is being
studied experimentally in the Molecular Physics Laboratory by the
technique of fast beam photofragment spectroscopy. Knowledge of the
32- potential curve may aid in interpreting the experimental data. This
particular state of CH+ poses an interesting theoretical challenge as
well, While there is no electron on the H+, asymptotically there is H
character in the molecular orbitals in the bonding region. Thus, de-
signing a calculation to determine properly the molecular orbi;als
requires some care. We have carried out a series of calculations
including different amounts of electronic correlation and have compared
the results in terms of the spectroscopic parameters describing the
minimum and maximum of the potential curve. The excellent agreement
between the different calculations confirms that we have realistically

described the CH+ 32° potential curve,

Theory of Nonadiabatic Collisions

During the past year we made substantial progress in the study of
atom-molecule collisions that involve two or more electronic potential
energy surfaces. Although the approaches we developed are applicable
to many different systems, we generally focused on systems that were

actively being investigated in the experimental program at SRI.

We have used three types of theoretical approaches. The first is
a quasi-classical trajectory model that invokes the Landau-Zener
formula to calculate a '"surface-hopping" probability at each surface
Ln:etsection; Such a model has yielded reasonable results for many
systems,s-ll but its quantitative accuracy may be limited in certain

situations, such as the reaction of He (21’35) with 0, now being studied

2
at SRI -~ a reaction that involves three surfaces. Therefore, we have
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also pursued two different quantum mechanical approaches. One of these
is based on applying time-dependent perturbation theory in the impact
parameter formulation. We assume the projectile follows a straight

line, constant velocity classical trajectory of a given impact parameter.
The potential seen by the target diatomic molecule is then explicitly
time-dependent. The other quantum mechanical approach, which is time-
independent, is a generalization of the quantum mechanical Infinite-

Order-Sudden (I0S) approximation.lz’13 This method has been extensively

applied to rotational excitation.lz’14 In this approximation, the
solution of the coupled equations is greatly simplified, when one
assumes the rotational levels for a given vibrational state are
degenerate, and solves coupled channel equations for only the number of
vibrational states of interest. We have found that similar expressions
can be derived when several electronic states are coupled. They can be
made extremely simple if one assumes that both the rotational and
vibrational levels are degenerate. Although this approximation must be
tested further, it looks promising at the experimental energies of

interest. The following subsections discuss our results with each of

these three approaches.

(a) Quasi-Classical Surface Hopping Model

The work done in this area was an outgrowth of a collaboration
with Dr, Aart Kleyn of the FOM institute in Amstérdam. Kleyn visited
SRI for two months in 1979 and implemented some of the computer codes
used in Amsterdam. We have done additional work to modify and generalize

these codes.

Using the surface-hopping model, we performed a comparative

study of ion-pair formation on two similar systems:

A + 1. - Af +1° 3
X 2-—:: 2 ()




and
+1I. -K+1I.
K I2 K I2 (4)
One would expect these two reactions to be rather similar, since in
each case the single active electron is in a 4s orbital, However, an
additional final channel is available in the first reaction, Pemning

ionization may occur,

Ar  + 1 —Ar+17 +
r 2"'r 2 e

Data are available for both reactions. The FOM group in Amsterdam con-

sidered K + I210,11

In a collaborative effort with Dr. Gillen, we were able to perfomm

%*
and Dr. K. T, Gillen at SRI has investigated Ar + L

. Eeeias e et

20

fi calculations that explained some of the differences in the differential
cross sections for these two systems. We explored how differences in
the matrix elements arising from the inner shell vacancy and the com-
peting ionization channel would affect the cross sections. This work
has been submitted to the Journal of Chemical Physics, and a preprint
is included as Appendix C.

(b) Quantum Mechanical Perturbation Theory of Nonadiabatic Collisions

Considerable theoretical effort15 has been directed to the
quantum mechanical formulation of the nonadiabatic (i.e., multiple=-
' potential-surface) collision problem. The most general theory, and the

least tractable, is a full coupled-channel expansion in rotational,

——

vibrational, and electronic eigenstates. We sought an alternative
formulation that preserved the essential features of the multiple-

surface crossings, but exploited approximations that can legitimately

be made at the high collision energies of interest (E ~ 50-100 eV).
‘ The approach chosen was the impact parameter approximation,16 in which

. a rectilinear classical trajectory is assumed for the translational

motion, leading to a time-dependent Schroedinger's equation for the
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remaining degrees of freedom. We discovered that m-del potentials of

the same type used in previous studies of collisions of alkali atoms
and diatomic molecules led to a particularly simple form of the final

. . . 17
equations. These equations were solved using the Magnus approximation.

We will briefly summarize the results of our calculations.
We performed calculations using model potentials chosen to model the
reaction

+ -
- +
Cs + o2 c2 o2 (6)

Initially, isotropic potentials were assumed; that is, molecular rota-
tion was neglected., The results exhibited strong oscillations, corre-
. . . . 18

sponding qualitatively to those observed in recent measurements.

These oscillations have been related to the vibraticnal meoticn of the
molecular O2 or 02- during the time of the collision., We also treated
anisotropic potentials using the Infinite-Order-Sudden approximation.
We obtained rotationally averaged cross sections between specific

vibrational states. The oscillations observed in the isotropic case

persisted, although they were less prominent,

These rotationally averaged calculations also enabled us to examine
the effect of different initial vibrational levels vi on the ion pair
formation. The model predicted that the oscillations will become less
pronounced as v, is increased. Although no measurements are available

to test this result, our calculations suggest a direction for future

experiments.

The theory and calculations are described in greater detail in a

paper that has been submitted to the Journal of Chemical Physics. A
preprint is included as Appendix D.

10
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(c) TIime-Independent Quantum Mechanical Theory of Nonadiabatic

Collisions

The time-independent theory of nonadiabatic collisions that
we are developing is a generalization of the usual I0S approximation
and is complementary to the impact parameter approach described above.
The impact parameter treatment assumes a straight line trajectory, but
explicitly considers the internal state structure, whereas methods based
on the sudden approximation properly treat the dynamics, but assume

internal energies are degenerate.

The sudden approximation is conceptually appealing for our
application to systems like He* + OZ’ since in the experiments rotational
states of the target are not resolved and in the sudden approximation
they do not have to be considered individually. Although the IOS
2,13

. 1 . .
formalism has been given for the case where vibrational channels

are considered explicitly, most calculations have been done in the rigid

rotor approximation (i.e., ignoring vibration).

In the present work, we develop the time-independent close
coupled equations for the case of two electronic states in the sudden
approximation for all internal degrees of freedom, that is, vibrational
and rotational., We start with a Hamiltonian expressed in terms of the
matrix elements between the electronic eigenstates. We then seek a

solution to the time-independent Schroedinger equation. The solution

t (R,r)

is written as the column vector ¢3(R,r) , where the wavefunctions on the
covalent and ionic surfaces, respectively, are given by expansiouns in

terms of the internal states of O, and O -.

2 2
- = \
#o(er) . Fi(R, cpi(r) 7
- &
wl(er) i Gi(R)xj(r) (8)
11
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In this case o (r) and xj (r) refer to all internal degrees
of freedom; that is, r refers to all internal coordinates. In the
sudden approximation, we solve the simplified set of two coupled
equations:

a2 3G+ 7o 1-%- Voo o) vol(R,rﬂ £(R,r) o o
a2 & SN R vu(R,r)J 8(R,1)

Here Z is an appropriatély chosen value of the orbital angular momentum
and k 2. %; (E-€), where ¢ is an average internal energy for the two
electronic states, for the functions £(R,r) and g(R,r). Replacing 2
by 2 and the internal energies by an average value are the heart of the
sudden approximation. In Eq. (9), the internal coordinates denoted by
r are considered as fixed parameters. The desired solutions of the

original problem are then given as:
F LR = <g (0] £®,0) e (r) > (10)
G a®) = <y ()] 8®,1) o (¥) > (11)

Roughly speaking, Eqs. (10) and (1l) average the solutions £(R,r) and
g(R,r) for fixed values of r over the internal wavefunctions in r, In
the present formulation, the number of coupled equations is just the
number of electronic surfaces in the problem,

The § matrix elements are written on terms of four N x N blocks

whose elements are qu, S01 S10 and §11, where the superscripts

i’ 71y Tig’ i)
denote the initial and final electronic surface, and the subscripts
denote the initial and final target state. In terms of the 2 x 2 §

matrix calculated by solving Eq. (9), whose elements are S

00’ s01’

511’ we have

12
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Siy = Cop () I8gq Loy (0D (12)
S0y = (o () 'sg) |y @) (13)
sig - g O |5 le, @) (16)
Si3 = Gy @ sy Ly @) (15)

In this work we are interested in the total cross section for
scattering from a particular vibrational state 1 on one electronic sur-
face to Qibrational state j on the other electronic potential surface,
where the cross section has been summed over all final rotational states.
We- now note that the internal coordinate stands for the vibrational
coordinate as well as the body fixed angle, y, between the diatomic
axis and the vector from the diatomic center of mass to the third

body. Then the desired cross section is

o0 (3= 1) =% [T o (3 isy) d cos y (16)
where ﬂ o - )

%0 (j~izy) = :—2 i (24 + 1) \sij 2L,¥) | (17)
Here we have explicitly written the dependence of Si? on the angular

momentum £ and angle v,

For our first application of this formalism, we used the following

model potential functionms:

| i V00 (R) = C1 exp (-CZR) (18)
V11 R) = VOO (R) - 1/R + AE (19)
V01 (R) = C3 exp \-CaR) sin 2y (20)




N

where AE is the asymptotic separation between the electronic states.

The parameters C. = 319.8680 a.u,., C, = 1.9319 a.u.,, C3 = 0,35 a.u,.,

1 2
C, = 0.5 a.u., and AE = 0.12578 a.u., were chosen to model the reaction
4

+ -
+ -
Cs 02 Cs + O2 (21)

The calculations now completed have assumed that sin 2y is fiked at 1.0.

The cross sections were summed explicitly over final vibrational states,

Calculations were performed for a system with the reduced mass of

Li + 02 to reduce the amount of computation require&. The internal

energy EO was taken as the vibrational energy of state i of 0

e e

9? and

the internal energy of E was taken as the internal energy of state j of

i 02 .

Results are shown in Fig. 1 for initial vibrational states 0 and 1.
The energy scale on the top of the figure also shows the total energy
for the Cs + O2 system with the same relative velocity as that of the
Li + 0, mass. Calculations must be performed at higher total energies

2
before the results can be evaluated., The increase of the cross section
with initial vibrational state is also apparent in the figure, Future
work also includes study of the effect of the choice of E on the results

and the evaluation of the charge exchange cross section for anisotropic

potentials,

im—
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EQUIVALENT C¢ + O,
50 100 200

CHARGE EXCHANGE CROSS-SECTION (aoz)
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78 910 20 30 40
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SA-4217-56
Figure 1. Preliminary results of calculations dased on

the Infinite-Order-Sudden approximation.
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APPENDIX A

APPROXIMATE SCALING FORMULA FOR COLLISIONAL ANGULAR
MOMENTUM MIXING OF RYDBERG ATOMS

A. P, Hiclman
Molecular Physics Laboratory
SRI International, Menlo Park, CA 94025
ABSTRACT

An approximate scaling formula has been determined that permits

the rapid estimation of cross sections for angular momentum changing

collisions of Rydberg atoms with a variety of targets, using informa-

tion about low energy electron scattering from the target. The
formula is obtained by fitting the results of coupled-channel and
Born approximacion calculations to functions of reduced parameters.

Application to Na(nd) + He, Ne, Ar, Ny, CH,, C,Hs; Rb(af) + He, Ar,

3

Xe; and Xe(nf) + CO_, suggests that the accuracy is about a factor

2

of two.
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I INTRODUCTION

Considerable attention has been devoted recently to collisions
{nvolving Rydberg atoms, especially the '"l-mixing" or angular momentum
changing processl‘ll

R (nd) +X R (ad') +X 298 (L)
where R* is the Rydberg atom and X is the collision partmer. It has
generally been argued that one should be able to analyze this process
in terms of the cross section for low energy electron scattering from
X. In this paper we present a very simple scaling formula that can be
used to estimate the cross section for reaction (1) to about a factor
of two, starting from information about e-X scattgring. This degrae
of accuracy is useful because the cross sections may vary by as much
as an order of magnitude over the range of n considered.

The scaling formula was determined by fitting the results of
coupled-channel and Born approximation calculations to functions of
reduced parameters. These parameters have a reasonable physical
interpretation in terms of the '"mearly free electron" picture. The
determination of the formula and its physical interpretation are dis-
cussed in Section II. Section III contains the results of calculatiouns
for several systems, including molecular targets. The accuracy of the
results for more complicated targets suggests that their intesrnal

structure may play only a minor role in the collisions studied.

A-2
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I1 THE SCALING FORMULA
A. Determination

,8

Qur previous calculations of angular momentum mixing may be
characterized as exact or approximate solutionsg of a specific, well-
defined model problem., We will begin by summarizing this problem, and
then show how one might expect to estimate the desired cross sections

using empirical functions of reduced parameters. Then one additional

approximation is introduced to tie the model problem to the physical

‘system involving the Rydberg atom and an arbitrary collision partner.

The model problem may be posed as follows, Consider the system

Na* + X indicated in Figure 1. The Rydberg atom Na* has principle
quantum number a, and we consider only the initial level 4=2 and other
levels £=3,4,...,0~l. Assume

Enz - End = AE, L=3,4,44.,0=1 (2)
This is approximately true for sodium since the d quantum defect Gd is
much larger than 64 for £ > 2. The interaction potential is given by a
Fermi pseudopotential

V(R,T) = 2ma  §(r-R) (3)

For the present discussion, A is to be considered an arbitrary constant.
We wish to calculate ¢ x’ defined by

L-mi

a-1
Y a(nd - nd), (4)

q E |
L-mix =
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1
using the gquantum mechanical Arthurs and Dalgarno 3 formalism or che

8
Born aporoximation as discussed previausly.s’ We expect that ¢

d-mix
-+
will depend on a, A, AE, and v, the relative velocity of Na and X.
That 1is,
Tgumix ~ Tgemix (0 A5V 3

We wish to find a functional form for o + Previously, we

L-nix
showeds that if AE = 0, the results of the Born approximation may be

wellefitted by
%)ty (5_)2 R ®

We can write this in a slightly different form by separating out a
factor ﬂné ag (the so-called geometrical cross section of the Rydberg
atom), and making A/v dimensionless by dividing by the unit length and

velocity in atomic units:

4 2 .2
Tymix = ™ 3 8 (sE=0) )
where
2 2
2 * A
Lo mz az 2 6,733 ®
e 0 va

The coustant L is the electron mass in atomic units. If AE # 0 our pre-
vious results8 suggested that in the weak coupling limit a more general
formula could be written

4
a ® ma ao sz £(v) 9)

L-mix

A-4
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where 5
1 . n aOAE
Y v

(10)
£(y) is an approximation to the family of functions shown in Figure 2
of reference 8 that depend weakly on the parameter n. In neglecting

the dependence on n we simplify the functiomal form but introduce some

ambiguity into the determination of £. Eq. (9) is expected to be a

i reasonable approximation in the weak-coupling (small A or large n)
]
§ limit, We now postulate that a more general formula can be obtained
E by writing
4 2
| O, mix T TR 3, SRIEY) (11)
where
2
g(38) = \8 as 3-0 (12)

We will f£ind later the constant y has the value 0.715. We performed a
oumber of calculations using the coupled channel method and Born
approximation to test the usefulness of Eq. (l11). For the situations
previously considered, the Born approximation could be applied ouly
when n was large, and the coupled channel method was feasible only when
n ~and the number of channels -was small, However, by varying A and v,
‘ i we have been able to probe a wider region of 3-y space and still keep

} ~ the number of channels small. The results of these calculations are

listed in Table 1.




I: was possidle to find, empirically, Zfunctions £(y) and g(3) such
that the results of the coupled chamnel and Borm approximation calcula-
tions were approximated by Eq. (ll) to about a factor of two. These

functions are shown in Figures 2 and 3 and tabulated in Tables 2 and 3.

At this point we have obcained an approximate scaling rule that
can be used to estimate the results of a model problem involving a
Fermi pseudopotential with arbitrary constant A. We now make an addi-
tional approximation to relate A to the low-energy electron scattering
by X. Let
4 mal 1/20° w
TA a1 (1/2a7) (13)
g . i3 the e-X scattering cross section at the electron energy l/2n2,

el

which is the average kinetic energy of the electron in the quantum level

n. As a1 = », A - L, the scattering length. Some justification is given
for Eq. (13) in referemce 8. In this work we find, a posteriori, that
it is reasonably successful.
With the substitution defined by Eq. (13), the final form of the ;

scaling rule is given by Eqs. (10), (11), and

2.1 %
* 1 cél(l/Zn )

3.337 4t

3= (14)

A
meao v
Although the scaling rule is empirical, it can be related to a

natural ohysical interpretation of the scattering process. This

interpretacion will be discussed in the next section. Finally, note

- TR i e SR i O o i
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that although the preceeding discussion has assumed that the Rydberg
atom was sodium, we find that the formula may be applied to other atoms
as well, The essential feature of the model is that the initial level

is separated by AE from a nearly degenerate set of possible final levels.
For large n, the difference in the number of final states for an initial
i=2 or 3 is small., Hence we will test the formula for collisions in-

volving Na (nd), Rb (nf), and Xe (nf),

B. Physical Interpretation and Discussion

The approximate scaling formula is a product of three factors.
The geometrical factor ﬂ:14ag shows that the cross section scales with
the overall size of the atom. We interpret the parameter 3 as a
coupling strength, and g(8) as the probability that the collision
partner will encounter the orbiting Rydberg electron. 3 increases
with 9,1 which gives an effective size of the collision partner, and
decreases with n, because for larger n the electron "cloud" is more
diffuse. We interpret the function £(y) as the probability that an
elastic collision between the orbiting electron and the collision

partner will cause a transition into a new energy level. It is inter-

esting to note that the parameter y may be rewritten

ve
Yz a8 = (15)

where A§ Ls the difference in the quantum defects of initial and final

states, and ve = 1/n (atomic units), the velocity correspouding to the
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average xinetic energy of an electron with principie quantum number n.

This formula is obtained by expanding

1l 1
- 2(a+6,)% ~ 2(a+5,)7

AE (16)

in the limit 5, << n and substitucing inte Eq. (10). When v is large,
£(y) = 0 and hence the Z-mixing will be small. Eq. (15) shows that
this can occur because the inelasticity is large, or because ve is
large compared to Vv, and hence it is less likely that a collision will
deflect the electron enough to change the shape of its orbit. Con=-
versely, the l-mixing will be larger when y Ls smail. This may occur
eicher because the energy difference between initial and final states
is small, or because the electron is moving slowly relative to the
collision partner and a collision tends seriously to perturb its
orbict.

It is instructive to consider various limiting values of the
scaling functions g and f. We have already noted that the function g
is parabolic as the argument approaches zero. For large values of
the argument, g tends to saturate at a value of 0.5 to 0.6. This
aumber is somewhat arbitrary since the prefactor nrxaag could equally
well have been 2ﬂnaa2 or 4mn 432. Appropriate limiting values of £(y)

0 0
are more easily defined. As AE -0 (or v = @), y =0, £(y) = 1., We

can thus draw the following conclu;ions about the general behavior of
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d-mixing cross sections. For large n, £ - 1, and the angular momentum
levels nd and a2’ (& 2 2) are eifectively degenerate. The decrease

of (n) with increasing n is due to the reduced coupling strength

 gemix
of the diffuse electron cloud. On the other hand, the (inelastic)
cross section tends to be small for small n because of the smaller
geometrical cross section and the increased importance of the energy
level splitting AE.

We now consider how the velocity dependence of the Z-mixing cross
section is controlled by the functions £ and g. At large n, y will
generally be sufficiently small so that £ a 1 for typical (thermal)

value of v. (Note that AE = n-3). Then the behavior of g(3) shows

that ¢

decreases for larger values of v, In the limit v - =,
S-mix

s = l/v2 but for smaller values of v the dependence may go as l/v

L-mix

-

or weaker, The l/v dependence corresponds to the intuitive notion
that a slower projectile spends more time passing through the Rydberg
atom, and consequently has a higher probability of encountering the
electron. The opposite may be true for small n when the coupling is
stronger. In this case, g(38) may achieve {s saturated value of

~ 0,5-0,6 for a range of thermal velocitigs, so that the velocity

dependence of ¢ will be determined by £(y). Examination of

J-mix

Figure ( ) shows that o

4 -mix will then increase with larger values of

v, because increasing v has the same effect as decreasing AE. Similar
behavior has been analyzed theoretically in other inelastic collisions

14
by Olson.




III RESULTS AND DISCUSSION

A, General Comments
" The approximate scaling formula determined in the previous section
has been used to estimate angular momentum changing cross sections for

collisions of Na(nd) wich He, Ne, Ar, N_, CHA, and C H , for collisions

2 378’

of Rb(nf) + He, Ar, and Xe, and for collisions of Xe(nf) + CO The

20
collision velocities used were the mean thermal velocities at the

temperatures of the experiments with which the results are compared.

This velocity is given by

ve (S—QY (17)

T

where k is Boltzmann's constant and , Ls the reduced mass of the
collision system. For collisions involving Na, we used T = 430 K;
for Rb, T = 520 K, and for Xe, T = 300 K,

The electron scattering cross sections were determined as follows.
For the rare gases Ne, Ar, and Xe, we used the formulas for the s, p,
and higher phase shifts given by O'Malley15 and computed the total
elastic scattering cross section in the standard way. For He, we used
at every n the value A = l.l9a0 (the scattering length) as the constant

term in the Fermi pctential [Eq. (3)]. For N_,, following Gallagher et al.,3

2 H
we used A = 0.7a0 at every n, For low energy electron scattering (E € 0.5 eV)
A-10
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there is not a strong energy dependence of the cross

from He and X

2

section. For e-Co2 and e-CHA, we ugsed the scattering data compiled by

Itikawa.lé These data are the total momentum transfer cross section,

which may include inelastic processes, rather than the elastic cross

sections required by the theory. For the CH4 data, Itikawa estimates

an uncertainty in the data of about a factor of two. At this level of

i accuracy, and at the very low electron energies involved, the substitu-

% tion of the momentum transfer cross section for the elastic cross
! section is probably not too serious an approximation. This view is
{

supported by Ltikawa. The CO2 data is more accurate, but the un-
certainty in the scaling formula probably renders the distinction
between momentum transfer cross section and elastic cross section
irrelevant. Finally, the e - C3H8 scattering data of McCorkle et al.l7
was used. In this case also, the momentum transfer cross sections were
measured.

The energy differences AE of Na were taken to be the d-f splittings

measured by Gallagher et al.18 The parameter y in the Rb and Xe colli-

m—

' sions were determined from Eq. (1l5), assuming

. 28 ~ 6, (18)

i } where 65 s 0.02 for Rb and 0.055 for Xe.
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3. Cross Sections

Results for collisions of Na and RD Rydherg atoms with rare gases
are presented in Figures 4-9. The agreement for the case that the
collision partner is He is especially good. Note that the present
results for Ya(ad) + He are determined using the scaling formula;
they differ only slightly from the coupled channel and Born approxi-
mation results presented previously. The good agreement for He
suggests that the Fermi pseudopotential is a rather good approximation
when the low energy electron scattering has a weak dependence omn
energy. Also, the small polarizability of He supports the use of a
short range (deita function) approximation to the e-He potential.
For the collisions involviag Ar and Ne the energy dependence of the
electron scattering cross section does influence the predicted result
for 0 ~ 10-20. The calculated cross sections are in reasonable agree-
ment with the data in this range, suggesting that the approximate
method of including the energy dependence [Eq. (13)] is at least
qualitatively correct.

We have also applied the scalirg formula to collisions involving

more complicated partners. In these calculations the _aternal structure

of the target is neglected, although it may of course influence the
electron scattering cross sections used. The qualitative agreement

observed between the calculations and experiment tends to suggest

A-12




that the elastic scattering of the electron by the target is the
dominant mechanism of f-mixing in these collisions as well as in those
involving rare gases. Note that the formula 1; not intended to be
used for a collision partner that has a charge or large dipole moment.
Figures 10 thru 13 show the calculated results for a aumber of
molecular targets. The agreement with experimenf is generally

reasonable. The excellent results for Na(nd) + N_ tend to confimm,

2
as in the case of He, the reliability of the Fermi pseudopotential
when the low energy electron scattering does not have a strong energy
dependence.

It is interesting to consider the structure observed in the experi-

mental date near n = 15 for Na(and) + C3H We have considered what

8-

form of the elastic cross section %y would be necessary to lead to

1

the observed form of g, (n), assuming the validity of Eq. (1l1).
L-mix

We found that the unusual structure in cz_mix(n) for n ~ 13-16 could

be £it by assuming an electron-propane elastic scattering cross section

that exhibits a strong change of slope, but not a dip, at an electrom

energy 0.060 eV, which is the average electron kinetic energy for

n = 15, This affective elagtic cross section is about a factor of

at a .17 for E > 0.060 eV, but rises

two less than % of McCorkle
more sharply for E < 0.060 eV. In this region (n ~ 15-17) the size

of the coupling strength parameter 3 is sensitive to two competing
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factors. As n increases, A increases because of the rapid increase

as the electron energy goes to zero. However, this is nearly

counteraczed by the factor n-3'37 that reflects the weaker effect of

in gel
the increasingly more diffuse electron cloud. The net effect is that
the coupling strength teeters bSetween these competing influences.

The results of this analysis are only qualitative, of course, but they
indicate that the unusual scructure in the Rydberg cross sectiom can be
related co a plausible behavior of the corresponding electron scattering

cross section.

A-14




IV CONCLUDING REMARKS
An approximate scaling formula for collisional angular momentum
nixing of low-{ Rydberg atoms has been determined that gives reason-
able results for a wide variety of systems., Although the formula was
determined using calculations that assumed the collision partner was
a rare gas, qualitative agreement is also obtained for targets with
internal structure. All the cross sections exhibit a maximum as a
function of n, but the shape and position of the peak may vary coﬁ-
siderably. For example, Rb + He has a sharp peak at n = 11, while
Xe + CO2 has a very broad maximum for n~28. The formulas obtained
here show how such contrasting behavior may be qualitatively related
to the energy level splittings of the Rydberg atom, the energy
dependence of the electron scattering from the collision partner,

and the relative velocity of the collision.

ACKNOWLEDGEMENTS
This work was supported by the Air Force Office of Scientific

Research.

A-15

T PO s o o -




AR o S foa i (R S bt g e ol el oo s 3 s

REFERENCES

l. T.F. Gallagher, S. A. Edelstein, and R. M. Hill, Phvs. Rev.
Lett. 35, 644 (1975).

2. T.F. Gallagher, S. A. Edelstein, and R. M. Hill, Phys. Rev. A
13, 1945 (1977).

3. I. F. Gallagher, S. A. Edelstein, R. E. Olson, W. E. Cooke,
S. A, Edelstein, and R. M. Hill, Phys. Rev. A 16, 441 (1977).

4. R. E. Olson, Phys. Rev. & 15, 631 (1977).
5. A, Omont, J. Physique 3§, 1343 (1977).
6. A. P. Hiclman, Phys. Rev, A 18, 1339 (1978).

7. J. Derouard and M. Lombardi, J. Phys. B: Atom. Molec, Phys. li,
3875 (1978).

8. A. P, Hickman, Phys. Rev. 4 19, 994 (1979).

9. E. de Prunelf and J. Pascale, J. Phys. B: Atom. Molec. Phys. 12,
2511 (1979).

10. M. Dugon, F. Gounand, P, R, Fournier, and J. Berlande J. Phys.
B: Atom. Molec. Phys. 12, 2707 (1979).

ll. M. Matsuzawa, J. Phys. 3: Atom. Molec. Phys. 12, 3743 (1979).

12. K. A. Safinya and T. F. Gallagher, Phys. Rev. A, in press.

13. A. M. Arthurs and A. Dalgarno, Proc. R. Soc. (Lond) 256, 540
(1960).

14, R. E. Olson, Phys. Rev. & §, 1822 (1972).
5. T. F., 0'Malley, Phys. Rev. 130, 1020 (1963).
6. Y. Itikawa, Atomic Data and Nuclear Data Tables 14, 1 (1974).

17. D. L., McCorkle, L. G. Christophorou, D, V. Maxey, and J. G. Carter,
J. Phys. B: Atom Molec. Phys. 11, 3067 (1978).

A-16




18.

T. F. Gallagher, R. M. Hill and S. A. Edelstein, Phys. Rev. A 13,
1448 (1976).

M ax oas o8 o




TA3ZLE 1

Values of ¢ as a function of n, v, and L obtained by coupled-

d-mix

channel calculations.

4 2
a ._112;21:4 L@ X 2 S/ |
4  6.867x10 , 1.19 4.75  16.21 0.192 4
S 6.867xl10_, 1.19 3.82  7.64 0.387
6  6.867x10_, 1.19 3.20  4.14 0.440
7 6.867xl0_, 1.19 2,75 2.46 0.402
8  6.867xl0_, 1.19 2.61  1.56 0.352
6  6.867xl0_, 0.595 3.20  2.07 0.326 |
6  6.867x10, 0.3 3.20  1.05 0.200
6  6.867x10_, 0.15 3.20  0.523 0.082
6  6.867xl0_ , 0.075 3.20  0.260 0.025
6  1.373x10_, 1.19 1.60 2.07 0.535
6  4.856x10_,  0.841 4.53  4.16 0.217
6  3.140x10_, 0.54b 7.00 4.16 0.102
6  3.160xle_, 0.272 7.00 2.07 0.085
6  3.140x10 , 0.137 7.00 1.0 0.055
6  3.140x10_,  0.0686 7.00 0.523 0.024
6  3.140x10_, 0.0343 7.00  0.260 0.0078
6 4.856x10_, 0.421 4.53  2.07 0.171
6 L.717x10 )  1.488 1.28 2.07 0.567
6  1.030x10 - 0.892 2.16  2.07 0.462
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TABLE 2

Values of the collision strength g as a function of 3. For

”
< 0.5, 2=0.715 3", For 3 = 3.0, we arbitrarily set g = 0.50.

1.5 0.43
2.0 0.51
2.5 0.56
3.0 "~ 0.60

———
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b
TABLE 3
Values of the collision efficiency. !
)
; a’s aE/v £ |
; . 0 1.00
% 1 0.99
2 0.91
3 0.78 é
4 0.65 %
5 0.54 E
6 0.45 %
% 7 0.38 %
8 0.32 1
9 0.28 i
i,; 10 0.25
: 11 0.22
E | : 12 0.19
i 13 0.18
14 0.17
., A-20




FIGURE CAPTIONS

1. Schemacic diagram of coordinates used to describe the Rydberg
atom and its collision partner.

: 2. The function f£(v), which we interpret as the probability that
a collision between the electron and the collision partner will
cause a change of angular momentum level of the elactron.

3. The function g(3), which we interpret as the probability of
encounter between the Rydberg electron and a collision partner,

4, The L-mixing cross sections for Na(nd) + He. The calculation
of de Prunelé and Pascale obtained upper and lower limits to the
cross sections.

5. The Z-mixing cross sections for Na(ad) + Ne. The calculation
of de Prunelé and Pascale obtained upper and lower limits to
the cross sections.

i

]

l 6. The L-mixing cross sections for Na(and) + Ar. The calculation
of de Prunelé and Pascale obtained upper and lower limits to the

' cross section.

R 7. The Z-mixing cross sections for Rb(nf) + He. The calculation
of de Prunelé and Pascale obtained upper and lower limits to
the cross sections.

£

3 8. The l-mixing cross sections for Rb(nf) + Ar. The calculation

{ ! of de Prunelé and Pascale obtained upper and lower limits to

B the cross sections.

9. The Z-mixing cross sections for Rb(nf) + Xe. The calculation
i of de Prunelé and Pascale obtained upper and lower limits to
the cross sections.

10. The f-mixing cross sections for Na(nd) + No. The calculation
of de Prunelé and Pascale obtained upper and lower limits to

. the cross sections.

11. The l-mixing cross sections for Na(nd) + CH,.

A-21
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13.

The l-mixing cross sections for Na(ad) + C3H8. The unusual dip
at n=l5 is discussed in the text.

The Z-mixing cross sections for Xe(anf) + CO,.
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L-MIXING CROSS SECTION (A2)
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Abstract

4=
Wavefunctions and potential curves for the ground XIZ state and
- . 1+ 1 +
eight excited states of '€ and "7 symmetry of CH have been obtained
using ab initio configuration interaction (CI) methods. In order to
take proper account of valence-Rydberg mixing, Rydberg functions were
included in the basis set. The orbitals used in the set of reference
configurations for the CI wavefunctions included both valence and Rydberg
orbitals, determined from a multiconfiguration self-consistent field and
a natural orbital calculation, respectively. Transition moments between
. 1+ 1+ 1 1
the ground electronic state and the 2°Z , 3'Z , AZ and 2 I states have

been computed, and the importance of these states in photodissociation

+
of CH is discussed.
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I. Introduction
+
The CH molecule has been of great interest to astrophysicists
1
ever since its discovery in diffuse interstellar clouds. In particular,
+
the abundance of CH appears to be as much as 30 times larger than
predictions based on probable formation and destruction mechanisms in
2
interstellar clouds. Also, many absorption lines observed in diffuse
interstellar clouds remain unidentified.3 Transitions to excited states
+
of CH , not yet discovered in the laboratory, have been suggested as
possible origins of some of these lines.4 A detailed understanding of
the structure and radiative transitions of this molecule could lead to
insights regarding these astrophysical observations.
) + 1+ .
The ground electronic state of CH has T symmetry and the oscill-
+
ator strength of the only known dipole transition Alﬂ - xlz has been
5 6
calculatedJ and measured. Accurate potential curves for the four lowest-~
. 1+ 1. 3 3+ .
lying electronic states, XL , A I, @I and "L , dissociating to the lowest
.. T2 2 7
separated-atom limit C ('P) + H('S) have been calculated by Green et al.
8
No higher-lying excited states are reliably known, although Lorquet et al.
1+
produced some excited state potential curves showing a bound T state
1 + 9
dissociating to C( D) + H . Watson, Stewart and Dalgarno, using the
random phase approximation, obtained large oscillator strengths for
+ +
transitions in CH from the xlz state to higher excited states. However,

the calculation was carried out at only one internuclear separation, so
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that the repulsive or attracrive nature of these excited states was not
determined.
In this work, we have undertaken a study to characterize those
- + Iy )
excited states of CH , which, in dipole transitions from the ground state,
can give rise to band spectra or to direct dissociation of the molecule.
We have calculated potential curves, wavefunctions and transition momencs
1+ 1 ,
for all eight states of 'Y or [ symetry lying within ~17 eV of the
ground state. In Section II we discuss the basis set choice and the
construction of configuration interaction wavefunctions which allow for
adequate description of valence and Rydberg state interaction. Additional,
larger calculations designed to test the results obtaindd are also des-
cribed. The results of all the calculations as well as the astrophysical

implications are detailed in Section III.

II. Calculations

The CH+ excited states of interest in studies of the interstellar
medium must lie within 13.6 eV of the ground state because there are no
photons "in the interstellar medium with hv > 13.6 eV due to the ionization
of atomic hydrogen. However, in order to compute such states accurately
the interaction with states lying somewhat higher in energy has to be
considered, Figure 1 shows the lowest six CH+ separated atom limits
which give rise to states of singlet T or I symmetry and the measured
energy differences. The lowest two Rydberg limits C(lP, 2p3s) + ﬁ+ and
C+(2P) +H(2s,2p), lie within 0.2 eV of each other and within about

B-4
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10 eV of the ground state asymptote. States arising from these Rydberg
asymptotes may be of astrophysical interest. In addition, states arising
from the lower-lying asymptotes probably exngience some valence-Rydberg
mixing -at small internuclear separations. Thus, it is necessary to design
a calculation which gives a balanced treatment of both valence and Rydberg
states.

Electronic energies and wavefunctions were calculated using the
configuration interaction (CI) method. Each wavefunction was expanded
in an orthonormal, neparticle basis set of C&’v symmetry-and equivalence-
restricted configuration state functions (CSF). These CSF's were linear
combinations of Slater determinants which have the appropriate molecular
symmetry and multiplicity. The Slater determinants were constructed
from an orthonormal set of molecular orbitals which were expanded in
temms of an elementary basis set of Slater-type functions (STF) centered
at the atamic nuclei.

The extended SCF basis set used in these calculations is given in
Table 1, The (5s/4p) basis of Clementi and Roettilo for C(3P) was
augmented by two 3d functions, with exponents chosen to account for the
distortion due to both long range electrostatic interaction and short
range chemical interactions. Ryﬁberg 3s and 3p functions with exponents
optimized for the SCF energies of carbon atom Rydberg states lP and 3D,

regpectively, were added to the set. The hydrogen atom basis was chosen

to describe both the separated-atom and molecular-bonding regions, as
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well as the Rydberg 2s and 2p limits. The molecular basis set consisted
of 24z, 127 and 35 functions.

In the construction of the CI wavefunctions, care was taken to treat
Rydberg and valence states in an equivalent manner in order to properly
describe valence-Rydberg mixing. The configuration lists for the 12 and
l: symmetries consisted of all single and double excitations with respect
to the lists of reference configurations given in Table 2, in which both
valence and Rydberg orbitals were occupied. In order to dissociate the
molecule correctly, in these configurations, the 3¢ and 4¢ orbitals,
which asymptotically have the form 3¢ = 2pc + lsH and 4g = ch - lsH,
were treated equivalently. The 5¢, 60, 27 and 3w orbitals are Rydberg
orbitals. The number of configurations in the CI wavefunction was 6808
for the £ symmetry and 9573 for the I symmetry.

For each internuclear separation, the orbitals for these calculations
were determined by a four-step procedure designed to provide physically
realistic Rydberg as well as valence orbitals. In the first step, valence
g orbitals were determined by a multiconfiguration self-consistent field
(MCSCF) calculation on the le+ state which included the configurations
1.<:22c:'23c1'2 and lc?2c?4cz, required for proper dissociation, along with the
correlating configurations 1023621ﬂ2 and 1624621ﬁ2. With the ¢ orbitals
frozen in the second step the valence T orbital was determined from a

properly dissociating MCSCF calculation on the Alﬂ state which included the

configurations 102202361n and 1622024cln. In the third step, two Rydberg
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g orbitals were obtained as natural orbitals from a frozen core two
electron CI calculation for 12 Rydberg states which included all config-

urations with one electron in the 3¢ or 4¢ orbital and one electron in an

external ¢ orbital, i.e. ng for n =2 5. In this calculation, six electromnic
states were obtained and the occupied Rydberg orbital from the lowest two
states in which the Rydberg orbital was occupied was selected; i.e., one
orbital was taken from each state. Finally, two Rydberg m orbitals were
obtained in an analogous manner from a CI calculation for l: Rydberg
states which included all configurations with one electronm in the 3¢ or
4o orbital and one electron in an external w orbital, i.e., n for n 2 2.
The orbitals thus obtained were used for the CI calculations on both
the T and I symmetries. The calculations were performed at 25 internuclear
separations between R = 1,5 ao and 20 a .
A limited number of larger configuration interaction calculations
were carried out to cest whether certain improvements which could be made
in these calcuiations would significantly affect the results. As will be
discussed in the next section, the basis set used resulted in errors in
asymptotic excitation energies as large as 0.4 eV. Therefore, in these
extended calculations an enlarged basis set listed in Table 1 was ;mployed.
This set consisted of the (6s/4p) basis of Clementi and Roettilo for C(3P),
augmented by two 3d functions, two 3s and two 3p Rydberg functions and

one 4f function. The diffuse 3d function was chosen to maximize the

polarizability of the C(3P) atom and the tight 3d function to maximize
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the energy lowering in a CI calculation on the CH& molecule (32' state).
The tighter 3s and 3p Rydberg functions were optomized with respect to
SCF energy of C(lS) and C(3D) respectively. Finally, the ctotal energy
of the'CHf 32- state was found to be insensitive to the 4f exponent. No
changes were made in the H basis functions in the erlarged basis set.

all of the reference configurations listed in Table 2 have the 2¢
orbital doubly occupied although one of the asymptotes d+(152232p2 1D) +
H+ under consideration has the carbon 2s orbital singly occupied. In the
extended calculations, the 2g orbital was included in the valence space
and the configuration list was not limited by reference to a set of
specific configurations. For the calculations on the 12+ symmetry, the
valence set consisted of the 2g, 3¢, 4c and 1l orbitals, the Rydberg set
included the 53¢, 60, 7¢ and 21 orbitals and the remainder of the orbitals
comprised the extermal set. The configuration list included all config-
urations generated by distributing (i) 4 electrons in the valence set and
(ii) 3 electrons in the valence set and one in the Rydberg set, plus all
single and double excitations with respect to the configuratioms in (i)
and (ii). For calculations on the ln symmetry, the Rydberg set consisted
of only the 27w orbital. The lg core orbital was kept fully occupied in
all configurations., This procedure resulted in 15454 configurations for
the 12+ symmetry and 13063 configurations for the lﬂ symme try.

The molecular orbitals used in the extended calculations were

determined by the same four step procedure previously described.
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Calculations of the five lowest 12+ states and four lowest lﬁ states were
carried out at a limited number ofrinternuclear separations. Results of
these test calculations are presented and compared with the results of the
calculation described previously.

The MCSCF calculations were performed using a program developed by
J. Hinze. All other calculations were performed using the ALCHEMY
system of programs developed by P. S. Bagus, B. Liu, A. D. McLean and

M. Yoshimine.

III. Results and Discussion

A. Potential curves and asymptotes

1+
In Figure 2, potential curves for the five lowest I and four lowest
-+
lﬂ states of CH are presented. The energies of these states as a function
of internuclear distance are ligted in Table 3. Of these nine states,
1+ 1 1_+ ] ,
only the X'Z , A7 and 2 £ states are bound with respect to their asymp-
totic limits. Dissociation energies, equilibrium separations and spectro-
scopic constants for the X and A states are compared in Table & with the pre-
vious CI calculations of Green et a1.7 and with experiment. Satisfactory
agreement with both sets of values is observed. Discrepancies for the
1 1_+

Al state are somewhat larger than those for the X'T state.

Excitation energies of the four asymptotes considered in this work,

+ 2 2

relative to the lowest asymptote C (" P) + H('S) at the separated atom

limit of R = Zan are given in Table 5. The excitation gpergies of the
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1 + 1 +
C(D)+H and the C( S) + H asymptotes are each larger by 0.4 eV than
the experimental values. However, the calculated splitting between the
L L ,
two states of neutral carbon C( D) and C( S) is exactly equal to the
spectroscopic value. In effect, the error in che ionization potential

of the carbon atom is ~0.4 eV in this calculation. Excitation energies

f } are given critical attention in the comparison becween these values and

the results of the extended CI calculations presented in the next section.

B. Extended CI Results

The extended CI calculations were carried out at the R = Zan
asvmptote and at three points in the interaction region. Excitation
energies for these calculations are also listed in Table 5. Discrepancies
in excitation energies for the first two excited limits are lowered from

0.4 eV to 0.2 - 0.25 eV. There is, however, no change in the excitation

L +
energy of the carbon Rydberg limit, C( P) + H . Asymptotically, the
total energy from the extended calculations is lower by 3 millihartrees

1 + 1
for the X'Z gsrate and by 2 mh for the A 1 state.

Interaction potential curves were compared at internuclear distances

-+ of 1.9, 2.2, and 3.4 ao. For all nine states, the maximum energy dis-

crepancy observed was 0.3 eV; all others are € 0.2 eV. In the extended

- Ee——— .

calculations, near the potential minimum, the AlI state was lowered by
1+

~0.2 eV while the X & state was virtually unchanged. That the Alu is

less well determined in the main calculations reported here than the

+
xlz state is further confirmed by the greater discrepancy with respect
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to experimental values of the spectroscopic constants in Table 4 for the
1 1 . .

AT state than for the X T state. However, in general, energy shifts of
this magnitude have little effect on the qualitative features of the
potential curves. Thus it was concluded that the main calculations

+
reported here realistically characterize the excited states of CH .

c. Discussion of Potential Curves

In using potential curves shown in Figure 2 to interpret physical
processes, the most reliable information is obtained by shifting the
curves so that their asymptotes have the spectroscopic separation, given
in Table 3.

) . L+ L+ .

The avoided crossing of the 2 £ and 3 T states gives rise to a

. 1+ . .
hump in the 2L state with a height of ~0.5 eV between 3 and & a - A
cursory search for quasi-bound levels on an energy grid of 5 x ].O-5
hartrees, led to three resonances at 0.296, 0.466 and 0.588 eV above the

. 1+ 1. 4
separated atom limit. The 2°% state appears to experience a small /R
attraction at large R with an energy minimum of about 0.2 eV at R = 6.2 ao-
This, however, is well outside the Franck-Condon region of the ground
state.
, 1+ 1

The two highest £ and I states calculated also appear to interact.

1+ 1+ 1 1
The 4 T and 5T states (as well as the 3] and 4[] states) are very
close in energy at R = 3.5 a_, creating ripples in the potential curves.

1+
The 5T also appears to have a quasi-bound vibrational level about

2.8 eV above the separated atom limit.

B-11

g}




i ri

-—

o ——— i IRV ————

Tt is clear that, with the exception of the quasi-bound vibrational
levels menticned above, no new band spectra of CH+ are to be found. The
excited scates will be important, however, for photodissociation. With
the asymptotes shifted to agree with experiment, the vertical excitation

anergies at R = 2,1 a from the v=0 level of the ground state to the
(o]

1 b
1+ ~

+ 1 z i
2%, 3% and 27 states are 8.02, 12.92 and 13.58 eV, respectively.
. s s . . s + .
These scates may pe significant in photodissociating CH ia the inter-
. +
stellar medium. In comets where a large amount of CH can be observed
and where there is no Lyman cut-off of the solar photons, even higher

4+
states may be important in the photodestruction of CH .

D. Transition Moments
The electric dipole moments for transitions between the ground state
1 1+ 1_ 1 PR . .
and the 2% , 3 , A 7 and 2 7 states of CH are given as a function of
R in Table 6 and Figure 3. Properties, such as the transition moment,
tend to be more sensitive than the energy to the quality of the wavefunction
used to calculate them. When the transition moments from the main calcu-
lations were compared with the results of the extended CI calculations
1+ .1+ 1
there was excellent agreement for transitions to the 2 Z , 3T , Al and
1 . . .
277 states but fairly large discrepancies for transitions to the higher

1L+
<, 313 and aln. Since one of the main improvements in

+
states, ALE , S
the extended CI calculations is the inclusion, in effect, of 2s excited

reference configurstions and since the C+(2D) asymptote to which the

+ 1
412 and 3 T dissociate is a 2s excited configuration, this observation

B-12
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is reascnable. We, therefore, present tramnsition moments only for tﬁe
lower states, which include all states assessible in the interstellar
medium.

Our values for the X-A transition moment are generally within 20% of

g
those of Yoshimine et al.” which was used to predict an oscillator strength

for transitions between the lowest vibrational levels of each state in
. . 6
excellent agreemtnt with a subsequent experimental measurement. At
R = 20 a the transition moments between the ground stace and the first
o
two excited states of each symmetry are zero, consistent with the fact that

~

+ 2
there is no dipole transition possible between C ("P) + H(AS) and eicher
1 + 1 + . 1_+
C{D)+H orC(S)+H. At R =2.1 ao, transition moments to the 3T
1 . . . C e -
and 2 T are relatively large, in agreement with the finding of Watson
9 - . . ;
et al. The sum of the electronic oscillator strengths to all the excited
states presented here is 1.08. There are many peaks and dips in the trans-
ition moments for the higher states which are indicative of the changes
of character in the wavefunction occurring due to valence-Rydberg mixing.
. , , i+ L+ 1
Photodissociation cross sections to the 2L , 3L and 2 7 and
. . 11 N
excited states will be reporcted separately. The photodissociation cross

section and rates for the A-X transition have been calculated by Uzer and

12 . 5
Dalgarno, using the transition moments of Yoshimine et al.
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E. Surmary

! Potential curves for a dipole transition momenus to excited states
+ . . . 1+

of CH have been computed using large CIL wavefunctions for both £ and

1 .
1 symmetry. 1In order to obtain accurate valence-Rydberg interactions,

e

i a Slacer basis set conraining Rydberg functions was used and both valence

and Rvdberg molecular orbitals were included in the reference set of
configurations from which single and double excitations were allowed.
. L, co
All the excited states except for the A I were found to be repulsive in
s : . . 1+,
the range of internuclear separations for which the XL 1is bound

(1.5 a0 - 3.5 ao). Thus, these calculations show that none of the

i e

unidentified absorption lines observed in diffuse interstellar clouds can

+
be attributed to CH . Several resonances (quasi-bound vibrational levels)

. — e s e

, 1+ 1+
due to humps in the 2 £ and 5L potential curves may be observable.
From inspection of the transition moments, it appears that photo-
: . s . 1 1+
dissociation cross sections to the 2 7 and 3 £ will be large. These
. . 1+ - . . .
states, in addition to the 2L , may be significant in photodissociating

-
i CH in the interstellar medium.

>
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Table 1

+
Slater Basis Set for CH

Extended Calculations

c
Extended
Calculations

$(a,™h (ap™h
92.25013 9,48256
5.53875 5,43599
5.30567 4,20096
2.04126 2,.68435
1.30852 1,52427

1,05749
1,29478 0,5856
0.58380 0.3
6.53286 6.51003
2,60786 2,60051
1,44037 1.44361
0,96499 0,98073
1,23210 0.4855
0.47960 0,24
2,34 2,009
1.24 0,95

2.3
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Table 2

Reference Configurations for CIL Calculatioms

1+

S

2
lo 252302
2 2
10220 4o
2 2
lo 20 3cke
2. 2.2
lo 2¢ i
2 2
lg 20 305¢
2 2
loc 20 3cbc
2 2
le 2¢ 4o5¢

2
ICZZU 4obe

1

-

)
b e ——

chZGZBcln
1022624Glﬂ
lcgzcchQn
lc?Zc;AcZﬁ
1022c2303n

2
10223 4c3m
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Table 3

POTENTIAL CURVES FOR !T* AND Il STATES OF CH*
GIVEN IN HARTREES RELATIVE TO THE ASYMPTOTIC ENERGY OF EACH STATE?

Rlag)
.5

B PN E P S W WL WP IR TN e g s s o
PN
COOWMAOCWOREFPFMNOBL®EEFEMNI-OOVR 4O

~
o
o

.
3

BNV OVMWVE P PLUWULWLLRRNRNRN R e
COOVVORLOBRENOARFNH OO SO W

20.0

x'z*

-Q.
-0.
-Q.

~Q

-Q.
«0.
-Q.
~Q.
-0.
-Q.
-0.
-0.
-0.
-3.
=0.

-0

-Q.
-Q.
-0.
~Q.
-0.
-0.
-0.
-0.

-Q.

-0

Q
v]
0
0
-0
-0
-0
-0
-0
-Q
-Q
-0
-Q.
-0
-Q
-0
-0
-0
-0
-0
-0
-0
-Q
-Q

Q3338
07786
10867
.12924
14210
16920
15197
15154
14424
13200
11762
10275
o1-1. %11
Q7500
06293
.03225
04297
Q3151
02270
Q1433
Q0793
00441
00154
000638

Q000

Aln

. 10645
.06008
.02710
,004Q2
.01175
.02215
.02865
.03234
,03438
.Q3266
.Q2965
.02655
02267
.01992
01746
.01525
.01326
.01068
.00854
.00626
.00420
.00281
.Q0132
. 00068

.00069
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CO0OOQO

[«

CO00O0O0O0O0O0DO0OO0OO0O0OOOTOOO

2z

.16712
11777
.08192
.08614
.03790
.02530
.01690
.01163
.00737
.00798
.01079
.01418
.Q1722
.Q1935
.02027
.01979
.01788
.01290
.00692
.00003
.00541
.00759
.00711
.00501

. 14672

2'n

64383
.38467
-33672
.29822
.26714
26156
.21984
.20060
. 16603
.13472
.10713
.08373
066464
.05146
.03954
.03002
.02237
.01355
.00719
.00157
.00223
.00379
.00234
.00282

.16817

3zt

.32063
,26916
.23088
.20125
.17845
. 16021
. 14512
. 13221
.110653
.09286
07771
.06447
.05257
.04169
,03183
.02331
.Q1644
.00934
.Q0520
.00217
. 00020
.00083
.00148
.00129

OCOO000DO0O0DTO0O0OOCO0OODODO0OOOO0OOO

[
[~ el

o

. 19880

3'n

.26283
.20883
. 17097
L 16410
. 12696
L11132
.10152
.09394
07421
.05958
.05349
.05126
.05273
.06998
.04393
.03592
.02787
.01780
.01063
.00477
00113
.00031
.00083
.00063

0000000000 L0OHOCOODOODOOQOO
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(=~ N

0.35221
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OO0 O0OQO0O0CO0OODODOO0ODOQOOO000O

o

o

0.

4z

.26491
L2164k
.18132
.15576
. 13661
12128
.10849
.09807
.08353
.07490
.06945
.06523
.06080
.05478
. 04600
.03623
02751
.01738
.01039
. 004638
.00117
.00024
.Q007%
.00063

.35102

am

.29568
24415
.20622
.17788
.13373
12767
10336
08342
.06393
061656
.05991
.05841
.05635
.05425
.05256
.05071
.06824
L04347
.03809
.03103
.02338
.01710
.00708
.00149

37578

COO0OQOUOO00CCO0O000O00VCOoO0OO0QOO0OOCOO0

©

s1z+

.29191
.23624
. 19408
.16234
.13909
.12323
.11326
.10726
110193
. 10080
. 10040
09274
.07332
.05740
.04781
.04273
.03996
.03820
.03748
.03519
.02858
.01954
.00168
.01080

.364937

*rhe asymprotic energy for each state is taken to be the Caiculated energy at R = 20 . The
wergies for R < 20 a; are Given relative to the caiculated X'T* asymotote of -37.87038887
hertreer. 12, » 0.52818 A; 1 nartrew = 27.2116 oV,
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Table 4

+ 1+ 1
Spectroscopic Constants for CH X T and A [ States

This Work Green et al. Experiment
X's
R (a) 2.133 2.136 2.137
3
3 D_(eV) 4.140 4.11 4.27% 20.02
‘ AG%(cm-l)2743 2740
4
alz
; R (a) 2.381 2.332 2.333
( e |
; D_(eV) 0.936 1.069 1.29°
1
- d
’ s_(ca ly1s26° 1865 |
T, 25690 24970 24033°

| a) Do° + we/Z using values in Ref. 13 1
b) Using 4 vibrational levels

¢) Using experimental To, Doo for X state and we/Z for A scate

; d) Applies tov g2

Using experimental To and me/Z for X and A states.
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Table 5

+
Excitation Energies Relative to C p) + u%s)® in ev

1_+ 1

P b
Extended Extended i
Calculations Calculations Spectroscopic :
1 + i
C(P)+H 9.93 9.93 10.22 10.22 10,023
+ .
C (ZD) + H(ZS) 9.55 9.44 9.58 9.44 9.290
1 + -
C(s)+H 5.41 5.28 5.022
1 +
C(Dy+H 3.99 3.82 4.03 3.83 3.602

+
a) Asymptote (R=20a°) for Xlz state.

~——
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R

e

et 2 27T

0.2655
0.25Q9
0.2345
0.2165
0.196%
0.1747
0.1507
6.2244
0.0833
-0.0110
-0.1012
-0.2102
-0.3410
-0.4958
-0.6744
-0.8694
-1.0600
-1.2777
-1.3743
~1.3510
~1.1880
~0.9721
~0.5783
~0.3173
0.0002

Table 6

s
CH Transition Dipole Moments

(gt 2] 315

-0.3846
-0.46380
-0.5588
~0.6563
-0.735%92
~0.8653
~0.9712
~1.0738
~1.2591
-1.4105
-1.5277
-1.6118
-1.6617
-1.6736
-1.6415
-1.5598
-1.4308
~1.1888
-0.9608
~0.7363
~0.5576
~0.4409
-0.2869
-0.1820

0.0003
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<x12+[-"—}-j2=XlAln)

-0.4062
-0.3842
-0.3611
-0.3373
~0.3123
~0.288L
~0.2634
~0.2389
~0.1919
-0.1492
~0.1128
-0.0833
-0.0563
-0.0380
-0.0246
-0.0151
-0.0088
-0.0032
-0.0008
-0.0003
~0.0008
-0.0015
-0.0017
-0.0012

0.0000
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<x12+11‘%z1 2'1y

0.6202
0.6731
0.6873
0.6873
0.6781
0.6592
0.6287
0.5882
0.4762
0.36858
0.2782
0.2116
0.1561
0.1137
0.0790
0.0507
0.0276
0.0013

"0.0165

0.0301
0.0359
0.0346
0.024¢
0.0151
0.00C.




Figure Captions f

Figure 1l: Separated-atom limits giving rise to 1i+ or ln states
of CK+. Experimental energy separations are shown as
taken from tables compiled by C. E. Moore, NBS
circular 467, 1949.

+ +
Figure 2: Potential curves of CH : five of 12 symmetry and

four of ln symmetry.

Figure 3: Transition moments from the ground state to the
1+ 1+ |1 1 + X
2T, 3T ,ATand 2711 states of CH as a function
of internuclear separation. The relative signs of

the transition moments are arbitrary.
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ENERGY (eV)

CHT ASYMPTOTES |
¢t ®P)+H(2s. 2p)

10 [}
¥ ¢ ('p,2p3s) +HT
1 Nt (ep)+H (3s)
8 10.20 eV
10.02 eV
6 9.29 eV
t C ('S)"' H+
4} 5.02 eV | +
3 C(D)+H
+t4-t+—+cCP)+H'
2
3.60 eV




-37.3 T
ct (2P )+H(2s,2p)
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APPENDIX C

COMPARISON OF ION PAIR FORMATION
IN THE SYSTEMS ar® + I, and K + I,

A. P. Hickman and Keith T, Gillen
Molecular Physics Laboratory
SRI International
Menlo Park, California 94025

ABSTRACT

A simple model that has been used extensively by Los and coworkers
to treat ion pair formation in collisions of alkali atoms with diatomic
molecules is extended to include continuum coupling via a competing
Penning ionization channel. This extended model is then used to calcu-
late the differential cross sections for ion pair formation for the

*
system Ar + I_ over the energy range 28-134 eV and to compare with a

2
previous treatment of K + I,. In the absence of significant competition

from continuum processes,Ar* is expected to behave in a manner similar
to K, since the active electron is an unpaired 4s electron in both cases.

*
We perform model calculations for Ar + I, to investigate the effects of

2
varying the potential curves and charge exchange matrix elements and of

-~

including a continuum coupling function I (R). Comparison with previous

*
calculations for K + I2 suggests increased repulsion on the Ar - Iz

surfaces relative to those of K - IZ. The competing mechanisms of
excitation transfer and Penning ionization may have a small effect upon

the ion pair angular distributions.
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I INTRODUCTION

The study of a pair of generally similar reactions enables one to
isolate subtle effects that arise specifically from the differences
between the two systems. Recent measurements of the differential cross
section for ion pair formation in collisions between halogen molecules and
alkali atoms or metastable rare gas atoms provide such an opportunity.
Over the energy range 30-150 eV, all of the major features observed1
in the angular distribution for the reaction

ar” <3p2,0) +1, - ar o+ I, (L

2-4
can be correlated with those observed in the analogous reaction

+ -
K+ 12 - K + I2 . (2)

However, there are differences in the ratios of the intensities of various

features and in the position of the rainbow angle. The general similarity
* 3

is consistent with the fact that both K and Ar ("P) have an active,

unpaired 4s electron. The observed differences between the two reactions

*

should be related to the inner shell vacancy in Ar and to the additional

competing channels energetically accessible to the system, including

Penning ionization:

%* +
Ar +12-'.~\r+14+e . 3

In this paper we present model calculations designed to elucidate the

causes of the observed differences in the scattering data.




Ion-pair formation in the alkali-halogen system has been extensively
. . 5-7 . - . .
investigated both experimentally and theoretically. These reactions

have been modelled quite successfully by Los and coworkerss’6 using

classical trajectory surface-hopping technique58’9 that demonstrate the

: essential features of the reaction mechanism leading to ion-pair production.
Here we have modified and extended those model calculations to include
coupling to the continuum (reaction (3)). We estimate the autoionization
rate T (R) using a simplified form of a technique proposed recentiy by
Miller and Morgner.lo We are therefore able to perform quantitative
calculations that examine the effect of competing channels upon the ion

pair distributions in reaction (1).

In Section II we present the details of the model calculations and

discuss the inclusion of continuum coupling. Our results are presented

o e b, e S NANIALE 50

and discussed in Section III, and Section IV contains a summary.
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II  THEORY

A, Summary of the Model

We have adopted the theoretical approach developed by Los and co-
2,5,6 . . . 8,9
workers, which is a classical-trajectory, surface-hopping model
with the following additional approximations:

1. Simple analytic potentials are constructed from pairwise

interactions for the covalent electronic state K + I2 and

+ -
for the ionic state K + IZ .

~
.

The cross sections are obtained as the average of cross
sections for various orientations of the target molecule.
The axis of this target is assumed not to rotate during
the collision. Molecular vibration, however, is included,

as explained below.

3. For each trajectory, the classical vibration of the molecule
is calculated numerically assuming Morse potentials, and
the deflection of the projectile is obtained analytically

using classical perturbation theory.

An esgential feature of the model is that the ionic and covalent

. —— g <P CR——

*
surfaces cross at an Ar -12 distance R that depends on the vibrational

P coordinate of c?e molecule. This fact influences the collision in the

‘ following way. The system begins asymptotically on the covalent surface.
When the particles reach the location of the crossing with the ionic
surface, the Landau-Zener formula11 is used to compute the probability of

switching to the other surface. As shown in Figure 1, there are two

C-4
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possible paths to ion-pair formation. The surface crossing may occur on
the inward part of the trajectory (the dashed line) or on the outward part
(shown by the dotted line). A transfer to the ionic surface will initiate

an expansion of the I " bond since IZ- has a larger equilibrium internuclear

2

distance than I,. f this transfer occurs on the incoming trajectory, the

i tr e mean o i e

resulting 12- expansion will yield an effective vertical electron affinity
that increases with time. This will increase the radius R at which the
second surface crossing is encountered on the outward part of the trajectory.
Since the matrix element conmecting the two surfaces decreases strongly

with increasing R, the probability of a diabatic path through the second

—

! crossing may be significantly larger than at the first crossing. These

effects have already been thoroughly discussed in the literature.

The analytic form of the potential surface we have used differs

somewhat from the form used in reference 2. Ours is defined in terms of

Figure 2 to be

-

i Voo = VRD + VR + v (2) (&)
9.5 0.5
! ; v, = VR) - R, + VR - R, + v, (@) (5)

vo(r) and vl(r) are Morse potentials for I2 and IZ- respectively. The

same Morse parameters were used as in reference 2, namely, D = 1,54 eV,

[y T

3 =1.87 !\'1, and r_ = 2.67 K for 1_, and D’ = 1.02 eV, 3’ = 1.23 A‘l,

2

. and re' = 3.20 A for 12-. V(Ri) is a repulsive term of the Born-Mayer form,l2

BR,

V(R,) = A e (6)

C-5
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where, following reference 2, we initially use A = 6.4 x lOa eV and
B = 4,762 i-l. Note that for simplicity the same comnstants A and B
are used here for the ionic and covalent terms. The potentials we
use are much simpler than those of reference 2. Since ab initio
calculations are not available, we choose to use pote;:ials with as
few adjustable parameters as possible.

The potential surfaces defined by Eqs. (4) and (5) do not reflect

*
the multiplicity of states arising from the inner shell vacancy in Ar .

Cur simplified model is equivalent to assuming that all of the covalent
surfaces are degenerate, and that all of the ionic surfaces are
degenerate. This assumption appears reasonable at large values of R,
where the surfaces cross. In this region we expect no inner shell re-
arrangement processeés. The core electrons should have only a minor
influence on the potential shapes and coupling matrix elements. This
fact is indeed the major reason for the strong analogy to alkali
reactions and the justification for our use of the single surface
crossing and the coupling matrix element angular dependence13 (cosy

in Eq. (7) below) that are appropriate to alkali systems. The inner
shell vacancy in Ar* would, however, be expected to influence surface

parameters at much smaller R values and thereby could affect the shape

of the differential cross sections. We will return to this point later.




We use the same form for the coupling matrix element as {in reference 2:

%
y * ~c2R
VlZ(R,r,B) = cl[I + EA(Z)]* R e cos o (7
where R* :\/.% (I% + EA(r)%) . (8)

I is the ionization potential of the projectile and EA(r) is the vertical

electron affinity of the molecule as a functien of the separation r.

(c1 in eV; I and EA in a.u.; R in i; c2 in Afl). Note that the diagonal
§ terms V00 and V11 are orientation-dependent because they are defined in
' terms of R1 and RZ. Note also that the angular dependence of V12 forces
it to be zero at the angles required by symmetry.13 Initially the

- 2
constants c1 = (0,28 eV and c2 = 0,65 )y L were used for both reaction (1)

and reaction (2).

For each orientation of the target (in a space-fixed frame), we wish

to calculate the twe branches of the clagssical deflection function.

~ ———

These two branches give the scattering angle as a function of impact

) parameter for trajectories in which the surface crossing occurs on the

inward or outward part of the trajectory. (If the crossing occurs

-

twice, or not at all, ion-pair formation does not occur and the trajec-

tory is not counted.) For each impact parameter, the scattering angles

[P e
»

are therefore calculated for two sequences of events. In both cases,
the 12 molecule begins at rest on the neutral potential curve vo(r) at J
the equilibrium distance re, and che projectile follows a straight-line

path with constant veloeity throughout the collision. For the ionic

C-7
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branch of the deflection function, the system is assumed to switch to
the ionic potential at the first crossing. Then the Iz- molecules

begin to move classically on the potential vl(r), beginning at rest at

r = re (IZ). The location of the second crossing is determined

anumerically by monitoring the oscillatory motion of the target and the
rectilinear motion of the projectile. For the covalent branch of the
deflection function, the molecules do not begin to vibrate until the
crossing is encountered a second time, so that the first and second
crossings occur at the same intermolecular separation R. For both
branches of the deflection function, the orientation angle g

is computed at both crossings. The orientation influences the

transition probability through the factor cos ¢ in Eq. (7).

The preceding discussion shows how the appropriate potential is
determined at each point along a given trajectory. The scattering
angle is then determined by integrating the cumulative momentum trans-
fer perpendicular to the rectilinear motion, according to standard
fomulasl4 of classical perturbation theory. The deflection is easily
calculated analytically because the functions in equations (4) and (5)
are written as sums of two-vody potentials,

In order to obtain the cross section, it 1s also necassary to
calculate the probabilicy that the system will follow a given trajectory.

This {s done using the Landau-Zener formula.ls The total probability

c-8
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for a given sequence of surface crossings or avoided crossings is the
product of the probabilities for each event separately. This is easily
calculated once the locations of the two crossing points are known. The
result for the cross section (for a particular orientation of the molecule)

can be summarized in the following formula:

ion cov ,
o 2o %% b,) 2mb 2% (b 1)
4 Sin g = \deion + P . 9
; /db] S Lg% qn

Plon(Pcov) is the overall probability of following an ionic (covalent)

trajectory for a particular impact parameter b. The sums are understood
to be over all impact parameters that lead to the scattering angles § or
-8. Although eq. (9) presents the formal definition of the cross section,

we found it useful in practice to use a conventional histogram procedure.

B. The Penning Ionization Channel.
1. Estimating I"(R) for molecular systems.

T(R) /4 is the rate at which particles are lost from an initial

channel into the ionization channel via the reaction (3). [ is given bym’17
- 2
T= anlafil (10)
- 2mo|¢,. |H|3 | 2 1)
' final initial ’
where H is the Hamiltonian, 3 is the initial bound state wave function

initial

Y -
(Ar + Iz), $ is the continuum configuration (Ar + I + + e ) and p

final 2

c-9
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is the density of continuum states, If the continuum wave function is
normalized to unit amplitude asymptotically, then

2rp = 4/k (12)

where the kinetic energy of the ejected electron is, in atomic units,

E=1/2 kz.

Miller and Morgnerlo have suggested that the matrix element Hfi can

be written as the product of an overlap factor and a charge exchange

%*
factor. Specializing to our case, Ar + I_, this would be the product

2’

g =5 xg (@

fi fi fi 3)

*
where S_, is the overlap between the valence electron orbital on Ar and

£i
(o)
the final state continuum orbital, and Hfi is the matrix element for
the one-electron process
+
A 41 —ar+ 1 : (14)
2 2
(o)

1
Miller and Morgner 0 pointed out that H can be estimated using the

fi

semi-empirical correlation formula of Olson et al.:18

) -R/C
luﬁ | =6rR e (15)
where R is the internuclear separation in a.u., and
L. %
1/C 73 [II2 + IAr] (16)
G= (I I )%/C 17
I, Ar

2

vwhere II and IAr are the ionization potentials of I
2

2 and Ar in a.u.,

Cc-10




respectively. [HF:[ is then given also in a.u.
19 .
Based on past experience = calculating continuum overlap factors

sfi’ we have simplified the Miller-Morgner formula by setting Sfi ~ 1,

This approximation enables us to evaluate H_ A6 without numerical integra-

fi

tion, Furthermore, since the potential surfaces are not in general known,
we calculate the density of states 2mp from the energy of the ejected
electron as R = ®, This information is available from spectroscopic data.
Miller and Morgnerlo estimate that their formula is reliable within
a factor of three to five. We expect that our additional approximations
will degrade the accuracy somewhat, but the result should certainly still
be a reasonable order-of-magnitude estimate.

2. Ionization Probability as a Function of Impact Parameter.

The autoionization rate obtained in the previous section has

/

-AR
the form “(R) <R e . However, we have found that over the important

range of R probed in the collisions, the numerical values of I can be

well fit (~10%) by the simpler form

-azR
TR) = a e (18)
This is the form of I” that has been assumed in many previous semi-empirical ‘
studies.20’2l

We have found that for a I’ of the form of Eq. (18), a very simple

t
!
I

formula can be obtained, in the perturbation limit, for the ionization

probability as a function of impact parameter. Since

c-11
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the translational motion is already treated using classical perturbation
theory, a perturbation assumption for the continuum coupling is con-
sistent with the rest of the model.

Let b be the impact parameter. Then the survival probability P(b)
that ionization does not occur on a trajectory of impact parameter b is

P(b) = exp(-2F(b)] (19)
where in the perturbation limit

T(R)JR

F(b) = [ (20)
"{ flvo/l-(bz/Rz)

and vo is the incident velocity.

Substituting Eq. (18) imnto Eq. (20), integrating by parts, and

substituting x = R/b, we obtain

a.a b2

” -
F(b) = :VZ f AR (21)
o 1

The integral can be represented in terms of the modified Bessel function

K Then

L
a b

L
F(b) W Kl(azb) . (22)

Further simplification is possible because of the relation

x K, (x) ~ 2.076 e 0-932 x (23)

which is valid to about 10% for 2 £ x £ 12. The final result is

2.076a
1 _-0.932 ayb
F(b) 2= 2 Ay e 2

20
Cc-12
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Formulas (19) and (24) may now be incorporated into the model in
the following way. For each orientation, a deflection function is cal-
culated that gives the angular scattering as a function of impact parameter.
When the cross section is calculated from a particular branch of the
deflection function, a factor is first included to represent the probabil-
ity that the particles follow the correct sequence of curve crossings.
The result is then multiplied by P(b), which gives the probability that

the trajectory is completed without loss to ionization.

Cc-13




III RESULIS AND DISCUSSION

A, K+1I

-~
-

This reaction has already been treated in detail.z-a Here we
demonstrate tha: the use of the potentials defined in Section II-A
leads also to satisfactory agreement with experiment. In Figure 3,
we compare the calculated and experimental values at a lab energy (Eo)
of 60 eV. The agreement is not surprising since our potentials are
nearly the same as those fitted to the data in referemce 2. The major
difference is that we have neglected the small van der Waals term.

*
B. Ar + 12: General Approach

1 *
Gillen et al. pointed out that their results for Ar + I  were

similar to those of Aten et al.2 for K + IZ' The important differ-
ences are that the covalent peak is relatively somewhat smaller for Ar*
+ I2 than for K + 12 and that the rainbow in the ionic peak occurs at
smaller angles. The first difference could be caused by the continuum
coupling in the metastable system or by differences in the potentials and
charge exchange matrix elements. The second difference should be asso-
ciated with a difference in the shape of the potential surfaces.

In this and the following subsections we describe our qugntitative
calculations to investigate possible causes for the experimental dif-

*
ferences. With only a qualitative knowledge of the Ar + I, potential

surfaces, we do not expect to determine uniquely the coupling parameters




’z
|
i
j

-
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in this system. Hence, our approach to Ar* - I, ion-pair formation
calculations is to start with the K + I parameters and determine the
changes in the distributions caused by individually altering the continuum
width (T = Q0 initially), the surface coupling parameters, and the inter-
action potentials. The results should yield insight into the possible
causes of the differences observed between Ar* + 1, and K + I2 in the
ion-pair channel,
*

We initially performed trial calculations for ar + I: assuming
- =0, and using the same poiential parameters as for X + I . The
crossing point differs slightly for this system because the ionization
potential of Ar* is slightly smaller than that for K. This change

increases Rc somewhat, and thereby decreases V _ slightly, but the

12
effect on the calculations was quite small, The calculated peak ratios
and the position of the rainbow angle were essentially the same as those
calculated for K + 12, and these values did not agree with the daza for

*
Ar + IZ'

C. Ar* + Iz: The Continuum Channel.

We then examined the effect of including continuum coupling. It
should be noted that I(R) is assumed to affect only the covalent potential.
This is coansistent with the conclusions of Hultsch et al.z2 on similar
systems. One argues that Penning ionization of the covalent electronic

state is initiated by a one-electron process, namely the "exchange"

process, in which an electron from the ground state atom jumps into the

c-15
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hole of the excited atom. There is then a large overlap between the
valence electron of the excited atom and the coatinuum orbital. 1In

+ - ] ]
contrast for a system on the Ar + I2 surface, continuum coupling
necessitates a simultaneous two-electron rearrangement; such a process
would be expected to have a much lower probability.

+
For the ground electronic state of 12 , which is 9.3 eV above 12, we

-—

follow the prescription of Section II-B and obtain (for I and R in atomic
units)

“@®) = 1.752 R & 1 OR (25)

For R in the range 4 -~ 12 a_ s this is well fit by the form

-1.614R
a

I‘O(R) = 11.16 e .u. (26)

We performed calculations using this form of I'(R) and keeping the

other potential parameters the same. The result is that the continuum

coupling is not large enough to cause a significant effect on the ion-pair

distributions.
The charge transfer matrix element estimated from Eq. (15) is a
one-electron matrix element, In fact (R) should be larger than TO(R)

2
to account for the two equivalent electrons in the ﬁ% orbital.
’
2

Moreover, the I_ molecule has a valence configuration (chp)2 'ty Sp)

2

2 k,u

(ﬂ% JSp)2 (ﬁ% 8Sp) (ﬂ% s59)2, and these ten electrons have vertical
1 s ]

23
ionization potentials between 9.3 and 13.0 eV. In the spirit of our

C-16
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one-electron estimate of Fo, we should also calculate approximate continuum

coupling widths for the other electronms.

Although the ionization potential for electrons in the lowest two

*
of these orbitals is larger than the Ar excitation energy, Miller and

Margnerlo have shown that the electronic energy transfer to a pseudo-

continuum Rydberg state,

%*
Ar +I2-'Ar+I

" 2n

(core-excited in this case) can be treated in an equivalent way to a true

continuum interaction. The details of the formula are slightly different;

however, the calculated coupling widths are found to be quite similar to

those for states whose ionization potentials are lower than the excitation

energy of the incoming state. Assuming the contributions for all ten

electrons can be added (a reasonable first approximation), we obtain a

resultant ['(R) that is 10-15 times larger than PO(R) for R values between

5 and 11 a.u.

The effects of various coupling functions I'(R) on the calculated

angular distribution for reaction (1) at 28 eV are shown in Figure 4.

) Continuum effects are generally more pronounced at lower energies, and

: Eo = 28 eV is the lowest energy studied. Clearly ' = 10 ro’ which

approximates the summed ten electron continuum coupling estimated above,

yields a noticeable depletion of the covalent peak. However, I > 100 Po

seems required before the intensity ratios of the covalent and ionic
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peaks are in reasonable agreement with experiment. Since our approximate

estimates of I" are relatively crude, it is possible that I" is indeed an
order of magnitude larger than estimated. Hence, the continuum coupling
effect could make some contribution to the attentuation of the covalent
peak in reaction (1). However, the larger [ values (100 fo’ 1000 To)
give covalent peaks that are strongly attenuated at low T values; the
angular positions of the calculated peaks then disagree considerably with

the data.

%
D. aAr + IZ: Sensitivity to the Coupling Matrix Element V

*
Another possible cause for the smaller covalent peak in Ar + I

12°

2

could be a larger coupling matrix element V We have performed calculations

12°

in which T = 0 and the constant ¢, of V__ is varied [see Eq. (7)]. We find

1 12

that a significant change in V12 from the value for K + I2 is needed to

*
cause the desired change in Ar + I_ peak ratios. Figure 5 shows the

2

experimental angular distribution at E° = 51 eV, compared with three

calculations assuming V__ multiplied by factors of 1.0, 2.5, and 5.0

12

relative to K + IZ' Even though the peak ratios are accurately matched

by scaling V__, by approximately 2.5, we feel that this is an unreasonable

12
%*

change considering the expectad similarities between K and Ar ., Although

the potential surfaces for the two reactions have quite different

symmetries, these differences are associated with the symmetry of the

%*
Ar core. At the very large crossing radius (~5.7 A) between the ionic

C-18




and covalent surfaces, the properties of the core should play a minor role
*
in the electron transfer process and the outer Ar electron should behave

like a 4s electron in K.

E. Ar* + IZ: Sensitivity to sz.
It is obvious from Figure 5 that the calculated rainbow angle is not
in good agreement with the experimental data. None of the modifications
detailed above has altered the calculated rainbow position. Since its
position is most sensitive to the well depth in the ionic channel, we
investigated modifications to the potential parameters necessary for
achieving a match to the experimental rainbow angle. In our model, the
well depth is controlled by the choice of the parameters A and B in
Eq. (6). We found that varying these parameters to decrease the well
depth caused the rainbow to shift to smaller angles, as expected. Another
effect of this change was a reduction in the size of the covalent peak
relative to the ionic peak. Figure 6 shows the effect of changes in

the potential parameters upon the ion-pair distributions. The modification

that gave a reasonable fit to the ionic rainbow angle corrcsﬁonds to an

Ar' - 1.7 "well-depth" that is ~0.3 eV shallower than that of K= + I,

2
(at the same I-I internuclear separation),
For comparison, there are good ab initio calculations for the

diatomic potentials in ArF, KrF, and the Xe halides.za For each of

these systems the well depths of the various ion-pair states are

c-19




betwaeen 0.3 @V and 0.7 eV shallower than those of the analogous alkali
halide molecule. With spin-orbit coupling included, the three ion-pair
states calculated for each rare-gas halide pair differ by less than
~0.2 eV in well depth and 0.1 i in R, from each other. If a similar
result obtained for the triatomic systems, our method of treating the
A:? + I2 system by a single (average) ion-pair surface inte:sec:ing a

single covalent surface would be a reasonable approximation to the

average scattering on the relevant surfaces and our resultant 0.5 eV

- +
difference in Ar+ - I2 and K -l'2

well depths would appear to be reason-
: able.

%
F. Ar + 12: Conclusions.

Our calculations clearly indicate that the ion-pair angular distri-

butions for reaction (1) depend quite sensitively on the shapes of the

interaction potentials, the surface coupling matrix elemeants, and the

amount of depletion from competing continuum coupling and excitation

transfer channels. With only crude model potentials and order-of-magnitude

i estimates for the continuum coupling and excitation transfer effects, it
‘ ,-% does not seem justified to vary parameters to achieve a fit to the data
; l ;: that would be both model-dependent and non-unique. However, an estimate
!

of the probable causes for the differences from reaction (1) can be useful
in suggesting directions for further experimental or theoretical effort

on this system.
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The shift of the ionic rainbow for reaction (l), to lower T values

than that for reacfion (2), seems to be consistent with a shallower well in

the Ar+ +* 12- interaction (see Figure 6). This change also lowers the

magnitude of the covalent peak relative to the ionic peak. In fact all

other modifications combined would only need to lower the covalent peak

by an additional 30-4Q% to achieve a good agreement with the experimental

data at Eo = 51 eV.zs
Combined with the change in the ionic potential Aescribed in Sectiomn

E, an increase of c1 by ~407 over the K + I_ value (0.28 eV) would achieve

2

a reasonable match to the experimental data. However, such a change in v12
still seems rather large. As evidence for this assertion, we note that
Hubers et al.zs present a reduced matrix element formula that is slightly
modified from Eq. (7) and correlates with all alkali-halogen systems to
an accuracy of better than 10%. The modifi ation of the Ar* + I2 matrix
element postulated here would deviate by 407 from the predict10026 based
on the alkali data and would then suggest some real differences of Ar*
from alkali-like properties at distances of Rc m 5.7 3. It is difficult
to understand such a large effect at that distance caused by a vacancy
in the ion core.

Alternatively, a continuum coupling width of ~40 IL could be combined
with the shallower ionic potential to match the peak ratios adequately.

This width is somewhat larger than the rough estimate (10-15 I;) basad

on the Millcr-Morgnorlo arguments, and the attenuated covalent peak would

c-21 oo
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Ye located at larger T values than the data would allow. Yet our estimate
of T i3 subject to considerable uncertainty and could be significantly

in error. Also, the covalent peak position and shape are sensitively
dependent on the potential functions used. This has been demonstrated4

in K + Br2 by a comparison of calculations on diabatic and adiabatic

surfaces. Hence, continuum coupling (3) and excitation transfer (27)

reactions involving the ten valence I, electrons could be responsible for

2

all or part of the remaining 30-40% depletion of the covalent peak.
Finally, we note that making the potentials more repulsive tends to

decrease the size of the covalent peak relative to the ionic peak. For

simplicity, we have constrained our calculations so that the repulsive

Born-Mayer terms are identical on the ionic and covalent surfaces.

Although this is a reasonable first approximation, one could decrease the

covalent peak by relaxing this constraint and allowing more repulsion

in the covalent potential. If such a difference were responsible for

the smaller covaleat peak in (1) relative to (2), it would necessarily

imply differences between the two systems in the repulsive region.

This is easier to accept than large differences (40%) in the coupling

matrix elements at the much larger distances associated with the

surface crossings.
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IV SUMMARY

The small differences between the differential cross sections for

*
ion-pair formation in the Ar + I2 and K + I2 system can be explained,

o -
in part, by a more repulsive wall in the ionic Ar + Iz

+ -
to K +I_ . This yields a smaller ionic well depth (by ~0.5 eV at T,

surface relative
2

of Iz) and a correspondingly smaller ionic rainbow angle that is in agree-
ment with the data. If the covalent surfaces Ar* + 12 and K + I2 have
repulsive terms similar to those on their ionic counterparts, the calculated
ratio for the intensity of the covalent peak to the ionic peak in
reaction (1) is too large by a factor of ~1.4.

This ratio can be improved by one or more of the following: a

*
relative increase in the repulsion on the Ar + I, covalent surface; a

2
depletion of the covalent peak by competing Penning (3) and excitation
transfer (27) reactions; and an increase in the coupling matrix element
at the surface crossing between the ionic and covalent surfaces. The
third possibility seems least likely since it requires effects from the
Ar* core vacancy to be important at large R (~5.7 A).
Since the potential surfaces have only been estimated in a crude

way and since the continuum coupling width is only known'very approxi-
mately, we feel that no claim to a unique fit can be made. Continuum

coupling and excitation transfer processes may indeed cause observable,

but small, depletions of the covalent peak in the ion-pair process (1l).
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FIGURE CAPTIONS

Two possible paths a and b to ion pair production are schematically

*
indicated. The potential curves represent cuts of the Ar + I2 and

Ar+ + 12- surfaces at a fixed I2 separation.

Illustration of the coordinate system used to define the potential

functions.

Comparison of previous calculations and experimental data (Ref. 2)

on the system K + I, with the present calculation, which uses

2
slightly different interaction potentials.

Calculation of the differential cross section for ion pair formatiom

%
in Ar + I2 compared with the data of Ref., 1. The effect of different

autoionization rates ['(R) in the covalent channel is illustrated.
Fo is the function estimated using the method discussed in Section
II-B-1, and given by Eq. (26). Successively larger values of I'(R)

reduce the covalent peak by larger fractionms.

Calculation of the differential cross section for ion pair formation

%
in Ar + I2 compared with the data of Ref. 1. The effect of different

coupling matrix elements V12 is illustrated. [(R) is set to zero in
o

all cases. V12 is the form given by Eq. (7) with c1 = (.28 eV and

c2 = (.65 A-l, the same parameters used in Ref. 1 for K + IZ. The

scaled valueg of V. _ correspond to changing ¢. to 0.7 eV and 1.4 eV.

12 1

Calculation of the differential cross section for ion pair formation

in Ar* + I2 compared with the data of Ref. 1. The potential parameters,
defined in Eqns. (4) - (6), are A = 6.4 x 10" eV and B = 4.762 1"} for
the original well, and A = 1.35 x 10° eV and B = 3.781 A"" for the

shallower well,
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APPENDIX D

MODEL FOR FAST, NON~ADIABATIC COLLISIONS BETWEEN
ALKALL ATOMS AND DIATOMIC MOLECULES

A, P. Hickman
Molecular Physics Laboratory
SRI International
Menlo Park, CA 94025

ABSTRACT

Equations for collisions involving two potential surfaces are
presented in the impact parameter approximation. In this approxi-
mation, a rectilinear classical trajectory is assumed for the
translational motion, leading to a time-dependent Schroedinger's
equation for the remaining degrees of freedom. Model potentials are
considered for collisions of alkali atoms wi:'h diatomic molecules
that lead to a particularly simple form of the final equations.

Using the Magnus approximation, these equations are solved for parameters

+ -
chosen to model the process Cs + 0, - Cs + 02 , and total cross sections

2
for ion-pair formation are obtained as a function of energy. The results
exhibit oscillations that correspond qualitatively to those seen in
recent measurements, In addition, the model predicts that the oscilla-

tions will become less pronounced as the initial vibrational level of

O2 is increased.
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I. INTRODUCTION

In this paper we consider the process of ion-pair formation in

collisions between alkali atoms and diatomic molecules:
A+XY A" +x0° (1)

An important feature of this process is that two electronic potential
surfaces are involved, the location of whose crossing depends both on
the vibrational and translational coordinates. Considerable work has
been done to analyze experimental data in terms of a perturbative,
classical trajectory, surface-hopping model.:".3 The agreement is

satisfactory for many systems. However, there has been a tendency to

try to improve the basic model by introducing various ad hoc modifica-
tions. Here we will attempt to treat the process using a more
systematic theory.

Our approach is based on the semiclassical impact parameter

approximacion.A We choose a2 model form for the two potential surfaces

that is consistent with previocus work,s'6 and also leads to a particularly

simple form of the final equations of motion. We assume that the

translational motion is a straight line trajectory with constant velocity,

and then focus on the quantum mechanical evolution of the remaining

degrees of freedom under the resulting time-dependent Hamiltonian. An

approximace, unitary S matrix is found using the Magnus approxima:ion.7
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In Section II we present the equations of motion in the impact
parameter approximation for collisions involving two potential surfaces
that are functions of vibrational and translational coordinates. A
matzrix notion is used that highlights the manner in which the second.
po:enti#l surface affects the motion. It is shown how rotational
degrees of freedom may be treated using the sudden approximation. In
Section III results are obtained for potential surfaces chosen to model
the specific system

Cs+0, ~Cs +0, . (2)
2 2
Total cross sections for ion-pair formation as a function of energy
are calculated. Becaﬁse of the model nature of the potential surface,
and the perturbation solution of the equations of motion, the results
are not expected to be quantitative., However, the results are in

qualitative agreement with recent experimencs.8 Concluding remarks

are given in Section IV.
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II. THEORY

A, General Equations

We first develop the equations of the impact parameter approximation
for the case of two electromic potential surfaces that depend on a
translational coordinate R and a vibrational coordinate r. In the next
section we shall derive the form taken by these equations for our
particular model potencial, and show how the rotational motion may be
included using the sudden approximation.

Ler us take the matrix elements of the total Hamiltonian of the
system in & basis of two (diabatic) electronic functions. We will

assume that the resulting operator has the following form:

e (T +T )L+ | + (3

0 Vl(r) +V1(R) WOI(R,r) Wu(R.t)

v (r) +V0(R) 0 WOO(R,r) WOI(R.r)

’

Note that we have isolated the separable part of the diagonal potential
matrix elements. The translational and vibrational coordinates are R

and r, respectively. We now assume that the translational motion is given
by

X
R(c) = |b2+ (ve)? (4)

where b and v are the impact parameter and relacive velocity, respectively.
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We can now write the following time-dependent Hamiltonian for the

remaining degrees of freedom:

) Tr+v0(r)+w0(t) 0 WOO(R(C),r) WOL(R(':)")
H= ‘ + (5)
0 Tr-hvl(r)+'nl(t) W01(R(C),r) Wll(R(t),r)
where
w, (t) =V, (R(E)) i=0,1 (6)
i i

Let us assume that the eigenfunctions Q; and eigenvalues ei of the
target Hamiltonians are known:

i i
[Tr+vi(r)] 3 = i=0,1 (7

Then the time-dependent Schroedinger's equations resulting from the

diagonal terms in the first set of brackets in (5) may be solved exactly.

That is,
(T +v () +w () of (g,0) =24t (r,0) 1 =0,1 (8)
r i i A 3t A ! !
has the exact solution
[
Lty = & (o) exp | -1 [*4— (c')]dt' t=0,1 (9
5 \ P “T9 ’
0

The lower limit of the integral corresponds to an arbitrary phase factor

and is chosen for later convenience to be zero.
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We now wish to solve

" *tocal(r’c) -y §L vcocal(r,t) (10)
t

in terms of the following two component expansion:

1;:(:,::) y

total N N
¥ (r,t) = u§1 GL(:) . + xEL Sx(t) *i(r,:) (11)

Substituting (11) with (10) and taking matrix elements in the standard

way, we obtain the following set of equations:

(& (&) i ] (o ()
.. F(t) A | .
& (t) a (t)
N - i N (12)
Bl(t) Bl(t)
e _{L_f(t) G(e) .
8 (t) B ()
LY L JLy

Note that we have used a notion in which the set of 2N coupled
differential equations is represented in terms of blocks, where each

block is an Nx N matrix. The blocks are given as follows:

1+
0 0 0 0 .
FH-)\(t) -<§u(t)|W0°(R(C),r)l§}\(r)> exp zj:/‘ [cu. - G)\] de ‘ (13)
0

t
1 1 1 1 ,
GM(t) -Q“(r) |W11(R(t),r)|§)\(r)> exp, if [cu - cx]d: { (14)
0




t
0 1 0 1 1 . ,
A“;\(t) -<§;(:)|W01(R(t),r)\Qx(r)\/\ exp | i f [¢u+;uo(c )-a\-u;l(t: )Jdt
0

A? is the Hermitian conjugate of A:

t
+ 0 1 0 1
A.'.:\(;) -<§k(r)‘wo].(R(:),r)]éu(r)‘) exp }-i f[ eu.+w0(t| )-e, - (¢! )] dt!'
0

There will be 2N solution vectors, corresponding to the system beginning
at t = =® in each of the possible states §§:2 , W=l 2, ...,N and géi( s
A=1...,N. If we solve Eq. (12) subject to the initial condition that

the solution matrix is the unit matrix at t #® -®, then the value of the

solution at t=2+%® can be used to find the probability that the system .
is in each possible final state after the collisiom., Each element of

the solution matrix at t = +® is, within a phase factor, equal to the
éortesponding element of the S matrix. This phase factor will be

discussed later.

B. Application to a Model System
1. 1Isotropic Potentials
In this section we will consider the form of Eq. (12) for a
‘ ‘ particular set of potentials chosen to model collisions of alkali atoms

with diatomic molecules. Such systems are characterized by surface

crossings at fairly large values of R (>6¢0 ), so that near the crossings

+

. fairly simple analytic approximations may be appropriate. We will use

Rt o M Sl bl ek Cacars S S A o
- ————

analytic potentials similar to those already discussed in previous wotk:5’6




Vo(R) = 0 (17

V. (R) = &E -+ (18)
1 R
woo(a) = wu(a) =0 (19)
| (B = ¢, exple,®) (20)
i v (r) - Ai; exp [ -23 (r-r) ] -Zexp[-e (r-r ?]; (21) é

These analytic functions model the behavior of the surface at
large values of R. The covalent surface is approximately constant, the
: ionic surface is coulombic, and their asymptotic separation is AE. Such

potentials are expected to be adequate as long as the major part of the

cross section comes from trajectories with large impact parameters. It
should be noted that one could add the same repulsive term to Vo and V1
without affecting the transition probabilities, since the formulas to be
presented here depend only on the difference potential. This modification
would allow Vo and V1 to be more realistic at small R.

Equations (12)-(21) lead to the following simplifications in Eq. (12).

First, the diagonal blocks F and G vanish entirely because of Eq. (19).

-

These are the terms that lead to vibrationally inelastic scattering om a

single surface. Second, the matrix elements of WOI(R(:).r) reduce to a

- —_—
CaD .,

function of t times the Franck-Condon factor

; 4] 1
. ¢, - <§u(r) l‘b\(r)> (22)
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because, according to Eq. (20), W

o1 is independent of r. Finally, the

integral inside the exponential can be done analytically. The final

form of the equations is thus

-, - r 9 ~ 1
al(t) al(c)
‘. 0 - a(t) ..
a‘r“(c) - a (e,
. _— (23)
Er(:) ﬁl(c)
. f .
‘. A (o) 0 .
. ~ 8. (t)
LEN(c)_ " 4 L N J
where
=C { ]
AM(:) Cu)\uOI(t) exp (if(t)} (24)
]
2 2
wm(t) = cl exp {-cz[b + (vt) ] } 425)

. 2
1.0 1 vt ve
£(t) = -(AE+ & 'eu-> c ln{ L . [1 +(b)] } (26)

In many applications it will probably be necessary to solve Eq. (23)
numerically. However, in the present paper we will resort to an
approximation that involves cousiderably less computation. We use the
Magnus approximacion,7 which involves setting the solution'g at t =+ +a

to the exponential of a matrix. The result is

0 Q
U = exp (-1 QT 0 @2n
D-9




T
where U is a 2N x 2N matrix. The matrix 3 and its transpose Q are defined by

[
QM- [ Au-k(c) de
-

= 2cw\b/-»01(c) cos [£(t)] dt

(28)

Because of the form of Eq. (27), unitarity is preserved. In the limit of
weak coupling, one may expand the exponential of Eq. (27) and recover the
standard result of first order time dependent perturbation theory. Note
also that integral in Eq. (28) could be evaluated using the statiomary -
phase approximation. The integrand is rapidly oscillating except near the
time corresponding to the surface crossing, so that the formalism reflects
the expected semiclassical result. In the present work, however, the
integrals will be evaluated by numerical quadrature.

We will denote the elements of‘g by U:: (b), where 0 s1i,j s1
and 1 S A,u < N. The superscripts denote the Nx N blocks, the subscripcs
the elements within each block. In this paper, we are primarily interested
in Uig (b), the block of transition amplitudes between an initial covalent

channel and a final ionic shannel. For this case, the‘total cross section

from an initial vibrational state i to a final state A\ is given by

2
g =2m f |Ulo(b)|bdb (29)
A 3 A

D-10
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We may also define a cross section summed over final states:

N

o(w) = ;5 %, (30)

We now briefly discuss the determination of the S matrix from the
matrix U. Recall that the squared magnitude of each element of E gives
the probability of the corresponding state-to-state transition. That is,
each element of U must be multiplied by some phase factor in order to
obtain i. This phase factor i{s not necessary for the preseat applicatiomns
(Eqs. (29) and (30)], but it would be needed for a differential cross
section., We adopt the procedure9 of multiplying elements of E by phase
factors depending on ﬂo and “1’ which are the single channel phase shifts
obtained for the potentials VO(R) and VI(R)I respectively. [Note that
ﬂl is the phase shift in addition to the standard coulombd phase shifc].

The result may be summarized by writing
S=AUA (31)
where Q is a 2N x 2N matrix given by

(32)
A = exp (i

2 "L

This formal prescription amounts to multiplying each element of the ij

block of U by exp|i(M, +M )}, for i,] = 0,1,
~ i i
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2. Anisotropic Potentials
To include rotational degrees of freedom in the model it is necessary
to include the anisotropy of the interaction potential. We generalize the

potentials in the following way, according to the coordinates shown in

Figure 1.

VO(R,Y) - V(Rl) + Y(Rz) (33)
U (RY) = V(R +aE - 22 .82 (36)

)

1 a2
=V (R,¥) + AE = = = == P _(cos v) + ... (35)
0 R g3 2
-czR

wOl(R'Y) - cle sin 2y (36)

The potential V is an effective two-body potential between the projectile
and each atom of the (homonuclear) diatomic target, which is assumed to
have an internuclear separation of'Za. As in the isotropic case, an
exponential, repulsive form of V(R) could be chosen. However, for the
particular form of Eqs. (33) and (34), the results to be presented here do

not depend on V since it does not appear in the difference potential.

This form of V_ and V. has been used previously.5’6

0 1 The angular dependence

of W01 is chosen to be the same used by Kleym et al.8 for Cs + 02, and has

nodes at the angles required by symmetry.lo

We now obtain rotationally-averaged cross sections using the Infinite-

11,12

Order-Sudden (IOS) approximation, in which the cross section averaged

D-12
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over initial rotational states and summed over final states is obtained by
averaging the cross sections obtained in a set of calculatioms in which v ;
is regarded as a parameter. In other words, the rotationally averaged

cross section ax“ from an initial vibrational state y to a final vibrational

state A\ is given by
| 1 iy .
| N T3 f aM(Y) sin vdy @37 ‘
) 0
where cxu(y) is the cross section chained'for "frozen" Y¥. When v is

fixed it is easy to calculate the cross sections for ion pair formationm,

g using the methods of the preceeding sectiomn, for the form of V0 and Vl ?
given in Eqs. (33) and (34). The result for U(Y) is given by an equation
of the same form as Eq. (27), with

QM(Y) - ZCM sin2y f wm(c) cos[fy(t)] de ' (38)
0
where
2 -
a P_(cosy) 2
2 vt vt
’ fy(t) = f(t) - ——-—v;z—-— (T) [1 -b—) ] . (39)

|
3

, | D-13




III. RESULTS AND DISCUSSION

The formalism developed in the preceeding section has been applied

with parameters chosen to model the reaction

+ -
Cs + 02 Cs + 0Z . (40)

Initially we used an interaction potential without anisotropy. 1In a
second calculation, however, anisotropy is included, and rotationally
averaged cross sections are obtained using the IOS approximation. For

both of the calculations we included 12 vibrational states of 02 and 12

of 0;. This number was sufficient for convergence. The energy levels

eO and (l and ovarlap integrals ch were calculated numerically using L
u .

the Morse potentials for 02 and 02 defined by Eq. (21) and Table 1.

Other parameters for the potentials are also listed in Table l.

The results of the first calculation are shown in Figure 2. Total
cross sections for ion-pair formation are shown as a function of energy.
The cross sections are summed over transitions from the indicated initial
vibrational state to all final vibrational states. The most interesting
feature is the pronounced oscillations. These have been previously
Ln:erpreted2’6 in terms of a classical :rajec:ory-hop;ing model, which
is briefly summarized here. The basic idea is that the crossing point

(or seam) of the covalent and ionic potential surfaces depends on the




vibrational coordinate. On the inward part of the trajectory, if the O

2

is in the v=0 state, the vibrational coordinate is localized near its

equilibrium value, and the crossing occurs at R2=7.2 a 1f a crossing

0
will be formed, and the

to the ionic surface occurs, however, O2

vibrational coordinate will start to expand, since the equilibrium

2 Depending on the relative

separation of O, is larger than that of O

20
translational velocity, the 0; may uhdergo a fraction of a vibration or

several vibrations before the crossing seam is reached a second time.

1f the 02 is fully expanded at the second crossing, this crossing will

occur at a larger value of R, and the matrix element for recrossing to

the covalent surface will bé much smaller, because of the exponential

2 undergoes a half-integral

dependence of wOI(R)' In other words, if the O
number of vibrations between the surface crossings, the cross section for
ion-pair formation will be enhanced.

This classical model has successfully explained the oscillatious
observed in the experimental data of Kleyn et 31.8' It is worth noting,
however, that except for a few excepcions,13 the previous calculations

have assumed that the O2 begins at rest in the bottom of its potential

well. Our present calculations show that the oscillations persist in a
model that treats the diatomic target quantum mechanically. We are also
able to examine the effect of changing the initial vibrational state of

0 It is seen that the oscillations tend to become less pronounced as

2°
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v, i3 increased. A possible explanation for this effect is that as v

i i

vibration increases, and it

increases, the spatial extent of the 02
becomes more difficult to localize the first crossing. The oscillations
depend on the first and second crossings occurring at very different
values of R,

In Figure 3, we show the results of calculations in which an
anigsotropic term of the potential is treated using the I0S approxima-
tion. Compared to Figure 2, it is seen that the anisotropy causes
the oscillations to be less pronounced, but that the same trends persist.
Figure 4 compares the theoretical results for vi = O with the data of
Kleyn et al. The trajectory hopping calculation of Kleyn et al.s is
also shown. All theoretical cross sections have been multiplied by a
statistical factor of 1/3. Qualitative agreement between experiment
and the present theory is obtained. It is likely that the position of
the maximum in the theory could be brought into closer agreement with
experiment by adjusting the parameters cl and c2 of the coupling. We
have simply taken the values obtained by Kleyn et al.6 by fitting their
classical calculations to the data. (If the data of Kleyn et al.
presented in Figure &4 are scaled by a constant factor, the agreement

with the classical calculation is reasonable. This procedure is justi-

fied because the experimental cross sections are relative.)

D-16




A possible refinement to the theory, which would improve the

1

threshold behavior, would be to include a factor (Ef/Ei) in the cross
section formulas. An empirical correction of this form has sometimes
been used14 to insure that the cross section goes to zero at threshold.
For energies near threshold, the assumption of a straight-line, comstant
velocity trajectory is not valid. We have not included this factor in
the present calculations. For the cross sections at the lowest energies
presented in Figures 2, 3,.and 4, the correction would be on the order
of 10%.

It is interesting to consider what might cause the difference
between the surface-hopping calculation and the present model. Both
use essentially the same potentials, yet the differenée at some energies
is as much as a factor of two. The discrepancy may be related to the
following points., First, the rotation of the target is handled
differently in the two models. In the present work, introducing the
I0OS approximation causes the location of the broad peak in the cross
section to shift about 40% (cf. Figures 2 and 3)., This significant
change suggests the cross sections may be sensitive to the treatment of
the molecular anisotropy. Second, the Magnus approximation may not
provide a sufficiently accurate solution to Eq. (23). Finally, the
Landau-Zener formula used in the classical model often undersstimates
transition probabilities at high energics.ls

Further work is necessary

before firm conclusions can be drawm.
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IV. CONCLUDING REMARKS

We have presented the equations of the semiclassical impact
parameter approxXimation for the case of collisions involving two

potential surfaces, and have examined in detail their application to

e,

collisions of alkali atoms with diatomic molecules. Our results for

i the specific system Cs + O, are encouraging and suggest that the method

2
may be of great value in fast collisions where successive curve crossings

are not well isolated.

The present application has depended heavily on rather specific

assumptions about the analytic form of the interaction potential. These
assumptions were useful in order to simplify the numerical work required
in the first application of the theory. However, a number of refinements
may be introduced in 2 manner that is still computationally feasible.
In particular, more general forms of the potentials VO(R) and VI(R) may
easily be introduced. Including the non-separable terms, Woo(k,r) and
! A wll(R,r) is somewhat more difficult. Fortunately, experimental cvidances
seems to suggest that these terms may not be too important for collisions
of alkali atoms and diatomic molecules.
! Future work will focus on the applicability of the IOS to collisions
involving two potential surfaces, and on the application of more refined .

numerical techniques for solving the equations of motien.
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Table 1: Potential parameters. All quantities are given in

atomic units.

Ao Morse Parameters for Oz 0.1880
T Morse Parameters for O2 2.281
E ao Morse Parametexzs for O; 1.418
i Al Morse Parameters for 0; 0.1503
; Q rl Morse Parameters for 0; 2.534
; 31 Morse Parameters for 0; 1.090
E 2a Internuclear separation of O2 2.4
: AE Asymptotic eﬁergy separation 0.126
o Defines coupling matrix element 0.35
¢y Defines coupling matrix element 0.5
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Figure Captions

] Figure 1. Diagram illustrating the coordinates used on the present
calculations.

.Figure 2. Results of the model calculation of the cross secéion for
ion-pair formation in collisions of Cs + O_. An isotropic potential

2
; is used as defined in Eqs. (17)-(21) and Table 1. The cross sections

are summed over all (12) final vibrational states.
/ ' Figure 3. Results of the model calculation of the cross section for

ion-pair formation in collisions of Cs + O

2" The anisotropic potential

defined by Egs. (33)-(36) is used, and the cross sections are summed
over all (12) final vibrational states.

Figure 4. Comparison of the present model with the experimental
results and calculations of Kleyn et al. The latter calculation was
fitted to the data; if the experimental cross sections, which are
relative, are scaled by a constant the agreement with that calcula-

tion is reasonable.
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